ORGANIZACIÓN DE LAS NACIONES UNIDAS PARA LA ALIMENTACIÓN Y LA AGRICULTURA (FAO)

PROYECTO SOPORTE A LA TOMA DE DECISIONES PARA LA INCORPORACIÓN Y AMPLIACIÓN DEL MANEJO SOSTENIBLE DE LA TIERRA
PROYECTO DS-SLM / SD-MST
GCP/GLO/337/GFF
CONVENIO UPRA-FAO 276-16

EVALUACIÓN DE LA DEGRADACIÓN DE LAS TIERRAS – ÁREA PILOTO NIVEL LOCAL – SAN JUAN NEPOMUCENO (BOLÍVAR)

Consultor FAO
Julio César Álvarez Peña, Esp.

BOGOTÁ D.C., DICIEMBRE DE 2018
TABLA DE CONTENIDO

INTRODUCCIÓN.. I

OBJETIVO ... III

OBJETIVOS ESPECÍFICOS... III

DEFINICIONES DE SIGLAS EN INGLÉS .. III

1. DEGRADACIÓN DE LAS TIERRAS EN COLOMBIA.. 1

2. MARCO DE REFERENCIA .. 6

2.1. MARCO TEÓRICO PARA EL ESTUDIO DE TIERRAS.. 6

2.1.1. Definiciones.. 7

2.1.2. Sistema de clasificación de usos agropecuarios.. 7

2.1.2.1. Uso Agrícola... 8

2.1.2.2. Uso Pecuario (Ganadería).. 8

2.1.2.3. Uso Forestal.. 8

2.1.2.4. Uso Agroforestal ... 9

2.2. MARCO TEÓRICO PARA LA EVALUACIÓN DE LA DEGRADACIÓN DE LAS TIERRAS. 9

2.2.1. Metodología LADA.. 10

2.2.2. Metodología WOCAT... 11

3. CARACTERIZACIÓN DEL ÁREA PILOTO A NIVEL LOCAL ... 13

3.1. MONTES DE MARÍA.. 18

3.1.1. Características geográficas, ecológicas y ambientales de MM.................................. 19

3.1.2. Actividades económicas en MM.. 23

3.2. SAN JUAN NEPOMUCENO (BOLÍVAR).. 24

3.2.1. Sistema biológico de San Juan Nepomuceno.. 26

3.2.2. Sistema social de San Juan Nepomuceno... 29

3.2.3. Sistema económico de San Juan Nepomuceno.. 32

4. EVALUACIÓN DE LA DEGRADACIÓN DE LAS TIERRAS EN EL ÁREA PILOTO A NIVEL LOCAL... 34

4.1. CONTRIBUCIÓN DE ESPECIALISTAS (Q1).. 36

4.2. CLASIFICACIÓN DE LOS SISTEMAS DEL USO DE LAS TIERRAS – SUT (Q2). 38

4.2.1. Fuentes de información para la clasificación de los SUT... 39

4.2.2. Generación del mapa preliminar de cobertura de la tierra (1:25.000). 40

4.2.2.1. Paso cartográfico 1 (Adquisición de imágenes Sentinel-2).................................... 42

4.2.2.2. Paso cartográfico 2 (Combinación de bandas)... 42

4.2.2.3. Paso cartográfico 3 (Extracción para el área piloto)... 43

4.2.2.4. Paso cartográfico 4 (Generación de mosaico).. 44

4.2.2.5. Paso cartográfico 5 (Determinación del número de clases)................................... 45

4.2.2.6. Paso cartográfico 6 (Clasificación de máxima similitud).. 45

4.2.2.7. Paso cartográfico 7 (Calificación de la cobertura de la tierra).................................. 46

4.2.2.8. Paso cartográfico 8 (Conversión de raster a vector)... 46

4.2.2.9. Paso cartográfico 9 (Depuración por área mínima).. 47

4.2.2.10. Paso cartográfico 10 (Suavizado y simplificado de polígonos).............................. 47

4.2.2.11. Paso cartográfico 11 (Interpretación de la cobertura de la tierra).......................... 48

4.2.2.12. Paso cartográfico 12 (Transformación del sistema de referencia)......................... 49

4.2.2.13. Paso cartográfico 13 (Ajuste de la cobertura terrestre al área piloto)..................... 49

4.2.3. Generación del mapa preliminar de los SUT... 51
4.2.3.1. Paso cartográfico 1 (Delimitación del área piloto) 52
4.2.3.2. Paso cartográfico 2 (Coberturas a clases de uso) 54
4.2.3.3. Paso cartográfico 3 (Calificación de zonas climáticas) 56
4.2.3.4. Paso cartográfico 4 (Calificación del tipo de pendiente) 58
4.2.3.5. Paso cartográfico 5 (Calificación de los SUT preliminares) 61
4.2.3.6. Paso cartográfico 6 (Adición de atributos biofísicos y socioeconómicos) 67
4.2.4. Trabajos en campo y taller de expertos (Validación de los SUT) 67
 4.2.4.1. Trabajos en campo ... 67
 4.2.4.2. Taller de expertos, aplicación del cuestionario (Q2) 71
4.2.5. Validación del mapa de SUT ... 74
 4.2.5.1. Paso cartográfico 1 (Incorporación de áreas protegidas regionales) 81
 4.2.5.2. Paso cartográfico 2 (Incorporación del límite veredal) 81
 4.2.5.3. Paso cartográfico 3 (Incorporación de frontera agrícola) 81
 4.2.5.4. Paso cartográfico 4 (Fusión de polígonos adyacentes) 81
 4.2.5.5. Paso cartográfico 5 (Consistencia topológica) 82
4.3. DEGRADACIÓN DE LAS TIERRAS POR SUT (Q3) .. 82
 4.3.1. Fuentes de información para la clasificación de la degradación de las tierras bajo información nacional ... 85
 4.3.2. Aproximación de la degradación de las tierras por procesos biológicos 86
 4.3.2.1. Paso cartográfico 1 (Generación de Cuenca Hidrográficas) 86
 4.3.2.2. Paso cartográfico 2 (Extracción de la unidades de biomas) 90
 4.3.2.3. Paso cartográfico 3 (Calificación del grado de transformación del bioma) 90
 4.3.2.4. Paso cartográfico 4 (Unión con las clases de uso del suelo) 94
 4.3.3. Generación del mapa de degradación de las tierras bajo información nacional ... 96
 4.3.3.1. Paso cartográfico 1 (Unión de los tres procesos de degradación) ... 96
 4.3.3.2. Paso cartográfico 2 (Fusión en la capa de SUT) 96
 4.3.3.3. Paso cartográfico 3 (Unión de los SUT y la degradación) 96
 4.3.4. Generación del mapa de degradación de las tierras bajo MapQuest, cuestionario (Q3) .. 101
4.4. CONSERVACIÓN DE LAS TIERRAS POR SUT (Q4) 114
 4.4.1. Generación del mapa de conservación de las tierras bajo MapQuest, cuestionario (Q4) ... 116
4.5. RECOMENDACIONES DEL MANEJO DE LAS TIERRAS POR SUT (Q5) 120
4.6. BASE DE DATOS GEOGRÁFICA ... 125
 4.6.1. Estructura de la base de datos geográfica ... 125
 4.6.2. Sistema de coordenadas ... 126
 4.6.3. Atributos de las clases de entidades .. 127
 4.6.4. Estándares de calidad de datos ... 129
5. RESULTADOS DE LA EVALUACIÓN DE LA DEGRADACIÓN DE LAS TIERRAS EN EL ÁREA PILOTO A NIVEL LOCAL ... 131
 5.1. SISTEMAS DE USO DE LAS TIERRAS ... 134
 5.2. DEGRADACIÓN DE LAS TIERRAS ... 142
 5.2.1. Estado de la degradación, bajo información de nivel nacional 142
 5.2.2. Evaluación de la degradación, bajo MapQuest (WOCAT/LADA) 153
 5.2.2.1. Indicadores de presión .. 153
 5.2.2.2. Indicadores de estado .. 157
 5.2.2.3. Indicadores de impacto ... 162
 5.3. CONSERVACIÓN DE LAS TIERRAS ... 165
 5.4. RECOMENDACIONES DE EXPERTOS .. 171
6. ANÁLISIS DE RESULTADOS .. 174
CONCLUSIONES .. 181
ANEXOS ... 183
ÁBRIGOGRÁFIA

ÍNDICE DE FIGURAS

Figura 1. Países que actualmente utilizan la metodología WOCAT/LADA. .. 10
Figura 2. Países del proyecto DS-SLM. ... 10
Figura 3. Cuadro metodológico para la evaluación de la degradación de las tierras en el área piloto.
Herramienta de mapeo por cuestionarios (MapQuest). ... 35
Figura 4. Cuestionario (Q1). Paso 1, contribución de especialistas (MapQuest) 37
Figura 5. Clasificación de los SUT. Paso 2 de la figura 3 ... 38
Figura 6. Búsqueda de escenas de imágenes satelitales, Sentinel-2. ... 42
Figura 7. Extracción de escenas, Sentinel-2 .. 43
Figura 8. Archivos *.xml de pre-procesamientos a imágenes Sentinel-2. 44
Figura 9. Verificación de precisión de la imagen Sentinel-2. .. 44
Figura 10. Mosaico Sentinel-2 del área piloto. .. 45
Figura 11. Clasificación preliminar de la cobertura terrestre, máxima similitud. 46
Figura 12. Vector preliminar de la cobertura terrestre. ... 47
Figura 13. Interpretación de la cobertura de la tierra, patrones. .. 49
Figura 14. Esquema conceptual para la generación de los SUT preliminares. 52
Figura 15. Ajuste del límite de humedad relativa en San Juan Nepomuceno. 56
Figura 16. Formulario para captura de información en campo. .. 69
Figura 17. Cuestionario (Q2). Paso 2, sistema/clasificación del uso de las tierras (MapQuest) 73
Figura 18. Esquema conceptual desarrollado para la generación de los SUT preliminares 74
Figura 19. Proceso de validación y/o ajuste de las unidades de SUT según trabajo en campo 75
Figura 20. Base de datos alojada con ArcGIS – Collector para el trabajo en campo 76
Figura 21. Material trabajado en el taller de expertos para la validación y/o ajuste de las unidades
de los SUT preliminares. ... 77
Figura 22. Leyenda del mapa de los Sistemas de Uso de las Tierras (SUT) validado. 80
Figura 23. Degradación de las tierras por cada SUT. Paso 3 del cuadro metodológico para la
evaluación de la degradación de las tierras en el área piloto. .. 83
Figura 24. Esquema conceptual para la aproximación de la degradación biológica. 86
Figura 25. Cuestionario (Q3). Paso 3, degradación de las tierras por cada SUT (MapQuest). 101
Figura 26. Conservación de las tierras. Paso 4 del cuadro metodológico para la evaluación de
la degradación de las tierras en el área piloto. ... 115
Figura 27. Cuestionario (Q4). Paso 4, conservación de las tierras por cada SUT (MapQuest) 116
Figura 28. Cuestionario (Q5). Paso 5, recomendaciones de expertos (MapQuest). 120
Figura 29. Estructura de la base de datos geográfica. ... 126
Figura 30. Propiedades del sistema de coordenadas asignado a los conjunto de datos 127
Figura 31. Cuadro metodológico para la evaluación de la degradación de las tierras (MapQuest).
... 133
Figura 32. Gráfico porcentual de las clases de uso de las tierras. .. 134
Figura 33. Leyenda del mapa de los Sistemas de Uso de las Tierras (SUT) validado. 137
Figura 34. Gráfico porcentual de los SUT en Ganadería... 140
Figura 35. Gráfico porcentual de los SUT en Silvopastoral. ... 141
Figura 36. Gráfico porcentual de los SUT en Plantación forestal ... 141
Figura 37. Estado de la degradación de las tierras en el área piloto, bajo información nacional.. 143
Figura 38. Magnitud y severidad de la degradación de las tierras en el área piloto, bajo información
nacional. ... 152
Figura 39. Degradación de las tierras por cada SUT. Paso 3 del cuadro metodológico para la
evaluación de la degradación de las tierras. ... 153
Figura 40. Gráfico porcentual de las causas directas de la degradación en el área piloto, bajo
MapQuest. ... 155
Figura 41. Gráfico porcentual de los tipos de degradación en el área piloto, bajo MapQuest 158
Figura 42. Gráfico porcentual de los grados de degradación en el área piloto, bajo MapQuest 160
ÍNDICE DE MAPAS

Mapa 3. Mapa del área piloto a nivel subnacional. ... 14
Mapa 4. División Sociropolítica de la Subregión Montes de María. (Estrategia Colombia Responde) 15
Mapa 5. Mapa del área piloto a nivel local. ... 16
Mapa 6. Mapa de fertilidad de los suelos de la subregión MM. (Banco de La República, 2013). 21
Mapa 8. Mapa de conflictos en el uso del suelo en los MM (Banco de La República, 2013) 23
Mapa 9. Mapa de localización de San Juan Nepomuceno, en el departamento de Bolívar. 25
Mapa 10. Mapa Subregionalización por ZODES, en el Departamento de Bolívar (Plan básico de ordenamiento territorial, 2018) ... 26
Mapa 11. Mapa del tramo vial de la Ruta 25 o Troncal de Occidente (Inco, 2017) 31
Mapa 12. Mapa preliminar de la cobertura de la tierra. ... 50
Mapa 13. Mapa del límite cartográfico para el área piloto a nivel local. 53
Mapa 14. Mapa preliminar de los tipos de uso de las tierras .. 55
Mapa 15. Mapa de zonas climáticas... 57
Mapa 16. Mapa de tipos de pendientes ... 60
Mapa 17. Mapa preliminar de los Sistemas de Uso de las Tierras (SUT)................................. 66
Mapa 18. Mapa de transectos para el trabajo en campo ... 68
Mapa 19. Mapa de captura de datos en campo .. 70
Mapa 20. Mapa de cobertura de la tierra validado ... 78
Mapa 21. Mapa de Sistemas de Uso de las Tierras (SUT) validado 79
Mapa 22. Mapa de Cuencas Hidrográficas en el área piloto .. 89
Mapa 23. Mapa de Biomas en el área piloto .. 91
Mapa 24. Mapa de transformación de los biomas en el área piloto 92
Mapa 25. Mapa de degradación biológica por transformación del bioma en el área piloto 95
Mapa 26. Mapa de degradación física por erosión, bajo información nacional 98
Mapa 27. Mapa de degradación química por salinización, bajo información nacional 99
Mapa 28. Mapa de degradación biológica por transformación del bioma, bajo información nacional .. 100
Mapa 29. Mapa de tipos de degradación de las tierras bajo MapQuest 110
Mapa 30. Mapa de grados de degradación de las tierras bajo MapQuest 111
Mapa 31. Mapa de causas directas de la degradación de las tierras bajo MapQuest 112
Mapa 32. Mapa de impactos sobre los servicios ecosistémicos bajo MapQuest 113
Mapa 33. Mapa de grupos de conservación de las tierras bajo MapQuest 119
Mapa 34. Mapa de recomendaciones para abordar la degradación de las tierras bajo MapQuest. .. 124
Mapa 35. Mapa de las Clases de Uso de las Tierras validado. .. 135
Mapa 36. Mapa de los Sistemas de Uso de las Tierras (SUT) validado. .. 136
Mapa 37. Mapa de degradación física por erosión, bajo información nacional. .. 144
Mapa 38. Mapa de degradación química por salinización, bajo información nacional. .. 147
Mapa 39. Mapa de degradación biológica por transformación del bioma, bajo información nacional. .. 150
Mapa 40. Mapa de las causas directas de la degradación de las tierras, bajo MapQuest. 156
Mapa 41. Mapa de los tipos de degradación de las tierras, bajo MapQuest. 159
Mapa 42. Mapa de los grados de degradación de las tierras, bajo MapQuest. 161
Mapa 43. Mapa de impactos sobre los servicios ecosistémicos, bajo MapQuest. 164
Mapa 44. Mapa de los grupos de conservación de las tierras, bajo MapQuest. 168
Mapa 45. Mapa de las recomendaciones de expertos, bajo MapQuest. .. 173

ÍNDICE DE TABLAS

Tabla 1. Fuentes de información secundaria (SUT Preliminares). .. 40
Tabla 2. Características del sensor Sentinel-2. .. 41
Tabla 3. Características de las bandas combinadas, Sentinel-2 .. 43
Tabla 4. Descripción de las clases de cobertura de la tierra calificadas. .. 46
Tabla 5. Clases de coberturas terrestres preliminares del área piloto .. 51
Tabla 6. Matriz de homologación de cobertura de las tierras a clase y tipo de uso de las tierras. 54
Tabla 7. Matriz de calificación del tipo de pendiente. .. 58
Tabla 8. Matriz de calificación del Sistema de Uso de la Tierra (SUT) preliminares. 61
Tabla 9. Fuentes de información secundaria (Degradación bajo información nacional). 85
Tabla 10. Matriz de clasificación del grado de transformación del bioma. .. 90
Tabla 11. Matriz de calificación del grado de transformación del bioma. .. 93
Tabla 12. Atributos de la capa de degradación de las tierras bajo información nacional. 96
Tabla 13. Recopilación de los cuestionarios Q3 (MapQuest). .. 107
Tabla 14. Síntesis del cuestionario Q3 (MapQuest). .. 109
Tabla 15. Recopilación de los cuestionarios Q4 (MapQuest). .. 118
Tabla 16. Recopilación de los cuestionarios Q5 (MapQuest). .. 122
Tabla 18. Atributos de la capa espacial nivel local. .. 128
Tabla 19. Atributos de la capa espacial SUT. .. 129
Tabla 20. Atributos de la capa espacial degradación de las tierras bajo MapQuest. 129
Tabla 21. Estadísticas clases de uso vs. frontera agrícola. .. 138
Tabla 22. Estadísticas de las clases y sistemas de uso de las tierras. .. 138
Tabla 23. Estadísticas del grado de degradación física (erosión) con base en las clases de uso de las tierras, bajo información nacional. .. 145
Tabla 24. Estadísticas grado de degradación física vs. frontera agrícola, bajo información nacional. .. 145
Tabla 25. Estadísticas del grado de degradación química (salinización) con base en las clases de uso de las tierras, bajo información nacional. .. 148
Tabla 26. Estadísticas grado de degradación química vs. frontera agrícola, bajo información nacional. .. 148
Tabla 27. Estadísticas del grado de degradación biológica (transformación del bioma) con base en las clases de uso de las tierras, bajo información nacional. .. 151
Tabla 28. Estadísticas grado de degradación biológica vs. frontera agrícola, bajo información nacional. .. 151
Tabla 29. Sistemas de uso de las tierras sugeridos dentro de las recomendaciones de expertos para el área piloto. .. 172
ÍNDICE DE FOTOGRAFÍAS

Fotografía 1. Taller de expertos en San Juan Nepomuceno, área piloto a nivel local. 71
Fotografía 2. Taller de expertos, mesas de trabajo para el desarrollo del MapQuest (Q2).............. 72
Fotografía 3. Taller de expertos, mesas de trabajo para la validación de los SUT. 72
Fotografía 4. Taller de expertos, mesas de trabajo para el desarrollo del MapQuest (Q3).......... 102
Fotografía 5. Taller de expertos, mesas de trabajo para el desarrollo del MapQuest (Q4)......... 117
Fotografía 6. Taller de expertos, mesas de trabajo para el desarrollo del MapQuest (Q5)......... 121
INTRODUCCIÓN

Uno de los resultados importantes de la Cumbre para la Tierra de Río de Janeiro, en 1992 fue la aprobación, entre otros, de tres tratados internacionales jurídicamente vinculantes, uno de ellos es la Convención de las Naciones Unidas de lucha contra la Desertificación y la Sequía (UNCCD), la cual fue aprobada en París el 17 de junio de 1994. Hasta el momento 191 países han ratificado la Convención. El Gobierno Colombiano, preocupado por los continuos y profundos procesos de degradación de las tierras y por su impacto negativo en las condiciones ambientales, económicas y sociales, la ratificó mediante Ley 461 del 4 de agosto de 1998, entrando a ser parte de la misma a partir del 8 de septiembre de 1999.

La esencia de la UNCCD es el compromiso que contraen los países afectados para preparar y ejecutar programas de acción destinados a prevenir la degradación de las tierras, luchar contra la desertificación y mitigar los efectos de la sequia, especialmente en las zonas subhúmedas secas, semiáridas y áridas.

Uno de los programas de acción destinado a prevenir la degradación de las tierras, fue el proyecto de “Evaluación de la degradación de las tierras en zonas secas” (LADA), ejecutado entre el 2007 y 2011 por 6 países como Argentina, para la región de Sudamérica; China, para la región este de Asia; Cuba, para la región América Central y el Caribe; Senegal, para África del oeste; Sudáfrica, para la región Meridional, Central y Este de África; y Túnez, para África del norte y del Mediterráneo. En donde el enfoque fue desarrollar herramientas de evaluación de la degradación de las tierras a nivel mundial, nacional y local.

Colombia se vincula dentro de estos programas con el proyecto de “Soporte a la toma de decisiones para la incorporación y ampliación del manejo sostenible de la tierra” (Proyecto DS–SLM / SD–MST), dispuesto entre 2015 y 2018 contando con la participación total de 15 países como Bangladés, China, Filipinas y Tailandia, para la región de Asia; Nigeria, Lesoto, Túnez y Marruecos, para la región de África; Argentina, Colombia, Ecuador y Panamá, para la región de Sudamérica y América Central; y Turquía, Bosnia Herzegovina y Uzbekistán, para la región del Este de Europa y Asia Central; bajo el apoyo del Fondo para el Medio Ambiente Mundial (GEF) y la Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). El desarrollo de éste proyecto se soporta en la implementación de las metodologías LADA y WOCAT, ésta última se define como “Panorama mundial de enfoques y tecnologías de conservación”.

El proyecto en Colombia es desarrollado por la FAO – Colombia junto con la Unidad de Planificación Rural Agropecuaria (UPRA), bajo el apoyo del GEF y el Ministerio de Agricultura y Desarrollo Rural (Minagricultura), a nivel subnacional y Local. Dentro del nivel subnacional (escala 1:100.000) se establece un área piloto, que para éste caso pertenece a los departamentos del Atlántico, Bolívar, Sucre y Córdoba; mientras que para el nivel local (escala 1:25.000) el área piloto está comprendida por el municipio de San Juan Nepomuceno, perteneciente al departamento de Bolívar.

La estrategia del proyecto es pretender incorporar el manejo sostenible de tierras (MST) en la toma de decisiones con énfasis en instrumentos de planificación en Colombia. Para llegar a esto, es necesario realizar la evaluación de la degradación de las tierras tanto a nivel subnacional como a nivel local. El presente documento “EVALUACIÓN DE LA
Evaluación de la degradación de las tierras a nivel local – San Juan Nepomuceno (Bolívar)

DEGRADACIÓN DE LAS TIERRAS - ÁREA PILOTO NIVEL LOCAL”, describirá la evaluación local para el área municipal de San Juan Nepomuceno, perteneciente al departamento de Bolívar, mientras que para el nivel subnacional se desarrolló otro documento a parte.

Para analizar la problemática de la degradación de las tierras, es necesario mencionar sus causas (indicadores de presión), una de ellas es la interacción de factores naturales y antrópicos que activan y desencadenan procesos que acarrean una reducción de productividad de la tierra y conllevan a problemas socioeconómicos, tales como, el aumento de la inseguridad alimentaria, migraciones, limitaciones al desarrollo y daños al ecosistema. Entre los tipos de degradación se mencionan aquellos que son generados bajo procesos físicos, químicos y biológicos.

La zonificación de la degradación de tierras se realiza con el interés de conocer el estado actual de las tierras y así tomar decisiones para implementar un manejo sostenible de las mismas. Por otra parte, establecer indicadores que permitan evaluar las prácticas implementadas en el manejo de las tierras.

Este documento presenta la integración de las metodologías WOCAT/LADA, con el objeto de evaluar la degradación de las tierras a partir de la clasificación y zonificación de los sistemas de uso de las tierras, teniendo en cuenta que los usos de las tierras son uno de los principales factores en la degradación de las mismas, asumiendo que el uso es uno de los transformadores (antrópico) de las coberturas de las tierras.

Determinados y zonificados los sistemas de uso de las tierras, se identifica el estado, las presiones y los impactos de la degradación de las tierras por cada uso de las mismas. Adicionalmente se identifican las prácticas de manejo en dichas tecnologías (sistemas de uso) y sus impactos sobre los servicios ecosistémicos, para finalizar con algunas recomendaciones para cada sistema de uso de las tierras. Para esto se cuenta con la herramienta de mapeo por cuestionarios, estructurada e implementada por WOCAT (MapQuest) bajo la metodología de evaluación de la degradación de las tierras en zonas secas (LADA). Esta herramienta posibilita la realización de mapas de degradación de las tierras y el desarrollo de mecanismos para el manejo sostenible de las mismas, precisando la participación de la sociedad.

El vínculo de la información obtenida mediante el cuestionario con el Sistema de Información Geográfica (SIG) permite la generación de mapas como así también de áreas de cálculo referidas a varios aspectos de la degradación y conservación de las tierras. La base de datos del mapa y los resultados del mapeo proveen una herramienta poderosa para la obtención de una visión general de la degradación y conservación de las tierras en un país, una región, o en el mundo entero.

Se espera de esta manera zonificar los usos de las tierras, los tipos de degradación de las mismas como su grado de afectación, identificar las causas directas e indirectas que están llevando a dicha degradación e identificar los impactos sobre los servicios ecosistémicos como las prácticas de manejo, para determinar algunas recomendaciones ya sean de prevención, mitigación, rehabilitación o adaptación, dentro del área piloto a nivel local, comprendida por el área municipal de San Juan Nepomuceno perteneciente al departamento de Bolívar.
Evaluación de la degradación de las tierras a nivel local – San Juan Nepomuceno (Bolívar)

OBJETIVO

Evaluar el estado, las presiones y los impactos de la degradación de las tierras como las prácticas de manejo realizadas en el municipio de San Juan Nepomuceno – Bolívar (nivel local).

Objetivos específicos

- Zonificar los sistemas de uso de la tierra (SUT) en el área del nivel local.
- Zonificar los tipos y grados de degradación de las tierras en el área del nivel local.
- Identificar las causas e impactos de la degradación de las tierras en el área del nivel local.
- Identificar las prácticas de manejo realizadas en el área del nivel local.
- Validar la metodología de evaluación de degradación de las tierras propuesta a nivel local bajo talleres de mesas técnicas.
- Difundir la metodología desarrollada a nivel local, bajo la realización de talleres con expertos.

DEFINICIONES DE SIGLAS EN INGLES

- **FAO**: Food and Agriculture Organization. Que en español indica, Organización de las Naciones Unidas para la Alimentación y la Agricultura (ONUAA).
- **GEF**: Global Environment Facility. Que en español indica, Fondo para el Medio Ambiente Mundial (FMAM).
- **GPS**: Global Positioning System. Que en español indica, Sistema de Posicionamiento Global.
- **LADA**: Land Degradation Assessment in Drylands. Que en español indica, Evaluación de la Degradación de Tierras en Zonas Áridas.
- **LUS**: Land Use Systems. Que en español indica, Sistemas de Uso de las Tierras (SUT).
- **SLM**: Sustainable Land Management. Que en español indica, Manejo Sostenible de Tierras (MST).
- **UNCCD**: United Nations Convention to Combat Desertification. Que en español indica, Convención de las Naciones Unidas de Lucha contra la Desertificación (CNULD).
- **UNEP**: United Nations Environment Programme. Que en español indica, Programa de Naciones Unidas para el Medio Ambiente (PNUMA).
- **WOCAT**: World Overview of Conservation Approaches and Technologies. Que en español indica, Panorama mundial de enfoques y tecnologías de conservación.
1. DEGRADACIÓN DE LAS TIERRAS EN COLOMBIA

Cada 17 de junio, desde que las Naciones Unidas designó en 1994 esta conmemoración, en el mundo se celebra el Día para Combatir la Desertificación y la Sequía, con el fin de concientizar a la población sobre las iniciativas internacionales para combatir estos fenómenos.

Esta fecha también es propicia para resaltar la importancia de adoptar medidas para la conservación y protección del suelo en el territorio nacional. Este recurso es indispensable y determinante para la estructura y el funcionamiento de los ecosistemas, a través del soporte y la regulación de nutrientes y otros servicios ecosistémicos que facilitan el desarrollo de actividades humanas como la agricultura, la minería y los asentamientos humanos.

Si bien la desertificación es un proceso de degradación de las tierras de zonas áridas, semiáridas y subhúmedas secas; otros procesos como la erosión y la compactación de suelos, junto a otros factores como la variabilidad climática y el uso insostenible asociado a las actividades humanas, pueden ocasionar pérdida del suelo, deformación de los terrenos y pérdida de las capas fértiles del mismo, y en casos extremos la aridización y la desertificación.

En ese contexto, el Ministerio de Ambiente y Desarrollo Sostenible formuló la Política para la Gestión Sostenible del Suelo, con la cual se busca promover la gestión de este recurso en un contexto integral en el que confluyan la conservación de la biodiversidad, el agua y el aire, el ordenamiento del territorio y la gestión de riesgo, contribuyendo al desarrollo sostenible y al bienestar de los colombianos.

Mediante la adopción de esta política, también se espera contribuir a la conservación del suelo, base esencial de la producción de alimentos, y direccionar a los productores hacia la aplicación de buenas prácticas ambientales y el aprovechamiento sostenible de los recursos naturales renovables en la agricultura.

Cabe señalar que entre las líneas estratégicas de dicha política se cuenta el logro del uso sostenible del suelo y la promoción de la investigación para avanzar hacia sistemas productivos sustentables, en los cuales se planifiquen las actividades productivas, se apropien e implementen tecnologías amigables con el ambiente. Asimismo, la implementación de estas buenas prácticas redundará en el mejoramiento de la calidad de vida, del hábitat humano y la competitividad, no solo para mejorar las condiciones de sanidad e inocuidad de los alimentos que se producen, sino también la protección de la salud y la vida de las personas y los animales. (MINAMBIENTE Noticias, 2018)

Enmarcados en la política para la gestión sostenible del suelo, la degradación es “el resultado de la interacción de factores naturales y antrópicos que activan y desencadenan procesos que generan cambios negativos en las propiedades del suelo” (MINAMBIENTE, 2015)

La degradación de la tierra abarca un alcance más amplio que la erosión y degradación de suelos en conjunto, ya que cubre todos los cambios negativos en la capacidad del ecosistema para prestar bienes y servicios (incluso biológicos y servicios y bienes
relacionados con el agua – en una visión de LADA – y también su relación con bienes y servicios sociales y económicos). (FAO, 2018)

Uno de los resultados importantes de la Cumbre para la Tierra de Río de Janeiro, en 1992 fue la aprobación, entre otros, de tres tratados internacionales jurídicamente vinculantes, uno de ellos es la Convención de las Naciones Unidas de lucha contra la Desertificación y la Sequía (UNCCD), la cual fue aprobada en París el 17 de junio de 1994. Hasta el momento 191 países han ratificado la Convención. El Gobierno Colombiano, preocupado por los continuos y profundos procesos de degradación de las tierras y por su impacto negativo en las condiciones ambientales, económicas y sociales, la ratificó mediante Ley 461 del 4 de agosto de 1998, entrando a ser parte de la misma a partir del 8 de septiembre de 1999.¹

La esencia de la UNCCD es el compromiso que contraen los países afectados para preparar y ejecutar programas de acción destinados a prevenir la degradación de las tierras, luchar contra la desertificación y mitigar los efectos de la sequía, especialmente en las zonas subhúmedas secas, semiáridas y áridas. (MINAMBIENTE, 2007)

La República de Colombia se encuentra ubicada en el noroccidente de Suramérica. Está bañada hacia el norte por el Océano Atlántico y hacia el occidente por el Océano Pacífico, limitando continentalmente con las Repúblicas de Panamá, Venezuela, Brasil, Perú y Ecuador. La extensión continental del territorio se calcula en 1.141.748 km². Políticamente, Colombia se divide en 32 departamentos, conformados estos a su vez por 1122 municipios y una población aproximada de 44.575.750 habitantes². La capital de Colombia es Bogotá Distrito Capital, sede del Gobierno Nacional o Presidencia de la República.

En Colombia debido a las condiciones topográficas (cadenas montañosas y valles alternos), la forma como se han dado los procesos de ocupación del territorio y la cultura de producción y consumo inherentes al modelo de desarrollo imperante, los procesos de degradación de suelos continúan incrementándose. Factores como erosión, compactación, salinización y contaminación dinamizan un proceso acelerado de desertificación³.

El desarrollo de los procesos de apropiación del territorio colombiano ha conducido a una importante transformación de los ecosistemas originarios, a través de procesos de colonización y establecimiento de sistemas productivos en alta medida extractivos y deteriorantes de la cobertura vegetal. Han sido especialmente afectados los bosques húmedos tropicales, bosques secos, bosques andinos, páramos, sabanas del Caribe y Orinoquia y los ecosistemas de manglar⁴.

A pesar de los esfuerzos para la conservación de estos ecosistemas, persisten procesos de transformación, fragmentación y pérdida por actividades antropicas, constituyéndose

¹ Tercer Informe Nacional de Implementación de la Convención de las Naciones Unidas Ministerio de Ambiente, Vivienda y Desarrollo Territorial de Colombia 2007.
en una de las principales causas directas de pérdida de biodiversidad, degradación de suelos y disminución de bienes y servicios ambientales, como la regulación hídrica, la protección de suelos y el suministro de agua para consumo humano y procesos productivos, entre otros, importantes para el desarrollo local de muchas comunidades.

Así, según datos del Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM), Ministerio de Ambiente y Desarrollo Sostenible y la Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A.)5 se estimó que en el año 2015 el 40% de la superficie continental de Colombia presenta algún grado de degradación de suelos por erosión (mapa 1), entendiendo degradación de suelos por erosión como, “la pérdida de la capa superficial de la corteza terrestre por acción del agua y/o del viento, que es mediada por el hombre, y trae consecuencias ambientales, sociales, económicas y culturales”. (IDEAM MADS U.D.C.A., 2015)

Del 40%, el 20% presenta un grado de erosión ligero, el 17% presenta un grado de erosión moderado, el 3% un grado de erosión severo y el 0,2% presenta un grado de erosión muy severo. De acuerdo con los resultados por departamento los que presentan mayor magnitud, es decir, con algún grado de erosión, superior al 70% respecto a su área, son: Cesar, Caldas, Córdoba, Cundinamarca, Santander, La Guajira, Atlántico, Magdalena, Sucre, Tolima, Quindío, Huila y Boyacá.

Al comparar las tierras de clima seco con las de clima húmedo en relación con la magnitud de la erosión, se evidencia que hay más áreas erosionadas en clima seco. Los usos del suelo por territorios agropecuarios como por ganadería ocupan un porcentaje muy importante del área en Colombia y estos a su vez se encuentran afectados por la erosión en un gran porcentaje (el 88% de los territorios agropecuarios se encuentran afectados y el 77% de los territorios por ganadería se encuentran afectados).

En cuanto a la degradación de suelos por salinización en el país, entendiendo por salinización de suelos como, “el proceso de aumento, ganancia o acumulación de sales en el suelo, es decir, al incremento de la salinidad” (IDEAM CAR U.D.C.A., 2017), se estimó que en el año 2017 el 7,9% de la superficie continental presenta algún grado de degradación de suelos por salinización (mapa 2), según datos del Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM), Corporación Autónoma Regional de Cundinamarca y la Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A.)6.

Del 7,9%, el 1,2% presenta un grado de salinización ligero, el 5,1% presenta un grado de salinización moderado, el 0,2% presenta un grado de salinización severo y el 1,3% presenta un grado de salinización muy severo. De acuerdo con los resultados por departamento los que presentan mayor magnitud, es decir, con algún grado de salinización, superior al 25% respecto a su área, son: Atlántico, Córdoba, Sucre, Magdalena, Cesar, La Guajira, Cundinamarca, Tolima, Bolívar y Quindío.

Evaluación de la degradación de las tierras a nivel local – San Juan Nepomuceno (Bolívar)

2. MARCO DE REFERENCIA

2.1. Marco teórico para el estudio de tierras⁷.

El estudio de las tierras se ha realizado desde mucho tiempo atrás, inicialmente con fines catastrales para determinar el avalúo y fijar impuestos. Para el caso agropecuario una de las primeras propuestas fue la clasificación de las tierras por su capacidad de uso (Klingebiel y Montgomery, 1961), que se conoce también como las 8 clases agrológicas. Se basa en una agrupación de los suelos con base en su capacidad para la producción de cultivos y de pastos sin considerar los tipos de uso y de manejo específicos; en consecuencia, el sistema no suministra la información necesaria para realizar una elección entre diferentes opciones de uso de la tierra.

De acuerdo con Rossiter (1994), en la década de los 70, hubo un aumento creciente de personas que estaban en desacuerdo con los métodos de clasificación de tierras existentes debido a su inefficiencia para planificar adecuadamente el uso. Los principales inconvenientes que presentaban los métodos existentes eran:

- Los métodos existentes se basaban únicamente en factores físicos de las tierras e ignoraban los aspectos sociales y económicos del uso de la tierra.
- No consideraban los usos de la tierra ni sus requerimientos específicos, las clases agrupaban usos con requerimientos muy diferentes.
- No se podían aplicar fuera del área donde se había desarrollado el método por lo tanto su generalización implicaba errores muy importantes.

En Colombia, el sistema de clasificación de tierras por capacidad de uso ha sido adaptado por el Instituto Geográfico Agustín Codazzi (IGAC, 2010) y es ampliamente utilizado como interpretación de los levantamientos de suelos. En la década de los 70, se realizó un estudio con base en el enfoque de las ocho clases agrológicas, como parte del Programa Nacional de Clasificación de Tierras, PROCLAS produciendo 19 planchas a escala 1:500,000 que cubren gran parte del país. Actualmente, se encuentra cubierto todo el país a escala 1:100,000 al igual que se realizó el mapa de conflictos de uso a la misma escala.

Adicionalmente, se ha realizado estudios de aptitud de tierras para diferentes usos y con diferentes propósitos. Para caña (CENICAÑA, 2011), tabaco (CORPOICA, 2007), banano (UNIBAN, 2010), cacao (CORPOICA, 2005), cultivos perennes y ganadería (Martín et al. 1997), papa (Martínez, 2006), pasifloras (Martínez, García y Sanabria, 2009) y agraz (Muñoz, Martínez y Ligarreto, 2009). (UPRA, 2013)

2.1.1. Definiciones.

La *tierra* se define como una extensión delineable de la superficie terrestre que contiene los elementos biofísicos, ambientales y socioeconómicos que influyen en el uso. Incluye el suelo, la forma del terreno, el clima, la hidrología, la vegetación, la fauna, los efectos del uso y las actividades humanas; todo esto mediante su relación con el uso actual o con la aptitud de uso (FAO, 1976; FAO; 1995).

La *evaluación de tierras* es el proceso mediante el cual se establece el desempeño de la tierra para un uso específico o sea la aptitud de uso de cada una de las clases de tierra existentes en una zona para determinados usos (FAO, 2007). El objetivo de la evaluación es proponer sistemas de uso que sean biofísicamente apropiados, socialmente aceptables, económicamente viables y que no ocasionen impactos negativos en el medio ambiente, es decir que sean sostenibles a largo plazo (Martínez, et al. 1997).

Los *sistemas productivos sostenibles*, son aquellos sistemas de producción que satisface las necesidades presentes sin comprometer los recursos que satisfarán las necesidades futuras, con el objetivo de conservar y proteger la biodiversidad mediante la mejora de prácticas de manejo (FAO, 2007).

Colectivamente los términos Coberturas y Usos han sido liados y muchas veces tomados en cuenta como similares e iguales. Coberturas de la Tierra es diferente a Usos de la Tierra, la estructuración de Usos de la Tierra inicia a partir de la identificación de las coberturas terrestres (Eurostat, 2001; Martínez y Mallicone, 2012; Rodríguez, 2011).

Coberturas de la tierra se define como la cubierta física que se encuentra en la superficie de la tierra (Rodríguez, 2011, Martínez y Mallicone, 2012); a diferencia de lo anterior, los *Usos de la Tierra*, puede ser definidos desde dos dimensiones: manejo y funcionalidad; la primera hace referencia a las actividades que comprenden la transformación de la coberturas de la tierra, y, la segunda, al propósito de la transformación (Martínez y Mallicone, 2012; Lamin y Geist, 2006); por ejemplo para una cobertura de pastos el uso puede ser como cultivo de forrajes (transformación) y como una cobertura para ganadería vacuna (propósito).

La FAO y la UNEP en 1999 caracterizaron este concepto como: “*Usos de la Tierra* se caracteriza por los arreglos, actividades e insumos humano que se realizan en un cierto tipo de coberturas de la tierra con el propósito de producir, transformar o conservar la misma”. Dentro de este contexto, FAO indica que los usos del suelo deben responder a seis interrogantes: 1) qué: el objetivo de las actividades realizadas, 2) dónde: la ubicación geográfica y la extensión de la unidad de análisis, 3) cuándo: los aspectos temporales que dan lugar, 4) cómo: el nivel tecnológico empleado, 5) cuánto: que sea cuantificable y 6) por qué: las razones que subyacen el uso actual.

2.1.2. Sistema de clasificación de usos agropecuarios.

Según la leyenda de usos agropecuarios del suelo a escalas mayores a la escala 1:25.000 (IGAC-UPRA), se establecieron y definieron seis usos principales relacionados

8 Leyenda de usos agropecuarios del suelo a escalas mayores a la escala 1:25.000. IGAC-UPRA, 2015.
con el sector agropecuario: Uso Agrícola, Uso Pecuario (Ganadería), Uso Forestal, Uso Agroforestal, Uso Acuícola y Uso Pesquero.

A continuación se definen algunos de los usos indicados anteriormente.

2.1.2.1. Uso Agrícola.

Se define a Nivel 1 en esta categoría como las tierras que tienen una funcionalidad de laboreo agrícola, en terrenos que han sido transformados y ocupados para la producción de cultivos cuyo objetivo es satisfacer las necesidades alimentarias, comerciales agrícolas y agroindustriales. Comprende las áreas establecidas para Cultivos Permanentes, Cultivos Transitorios, Confinados Agrícolas y Tierras Inactivas.

- *Cultivos transitorios*, pertenecen aquellos usos agrícolas con tierras dedicadas a cultivos que necesitan ser replantados después de cada cosecha para seguir obteniendo algún tipo de beneficio.
- *Cultivos permanentes*, hace referencia a las tierras dedicadas a cultivos que no requieren después de cada cosecha ser replantados para seguir obteniendo algún tipo de beneficio.

2.1.2.2. Uso Pecuario (Ganadería).

Tierras dedicadas a la cría de animales o a la ganadería, los usos principales son consumo humano (carne y leche), utilización artesanal (lana, cuero, plumas, etc.) y conservación de fauna (zoocría), el área de explotación está directamente relacionada con los usos mencionados anteriormente.

La ganadería se puede tipificar en función de las especies, siendo las más comunes: bovina (reses), equina (caballos), ovina (ovejas), caprina (cabras), etc., de acuerdo a las practicas pecuarias y culturales el manejo se puede realizar a cielo abierto o de manera confinada. Las especies menores como: porcicultura (cerdos), avicultura (aves), apicultura (abejas) y cunicultura (conejos), requieren menor área para su producción. Esta categoría se subdividió en tres clases: Pasturas, Confinados Pecuarios y Zoocría.

2.1.2.3. Uso Forestal.

El uso forestal se incluye dentro de los usos agropecuarios siempre y cuando manejen un concepto de producción directa o indirecta. Comprende las tierras con áreas naturales o seminaturales, constituidas principalmente por elementos arbóreos de especies nativas, exóticas e introducidas.

De acuerdo con FAO (2001), de origen natural o antrópico utilizados por el hombre para satisfacer sus necesidades, con fines comerciales de uso directo como la extracción de madera o indirecto como la utilización artesanal de frutos, semillas y demás sin acudir a la extracción de madera con tala del árbol. Los usos forestales se dividieron en dos clases: Plantaciones forestales comerciales y Áreas naturales y seminaturales.

- *Plantaciones Forestales Comerciales*, se refiere a aquellas tierras adecuadas por el hombre con plantaciones de especies arbóreas, cuyo propósito principal es
obtener un beneficio económico. Comprende dos categorías: plantaciones de coníferas y plantaciones latifoliadas.

- **Bosques Naturales y Seminaturales**, son aquellas tierras que se encuentran con especies arbóreas y arbustivas, cuyo uso principal es ecológico, el uso secundario está enfocado a la utilización de sus semillas, frutos y cortezas, con el fin de generar algún tipo de beneficio económico a una comunidad.

2.1.2.4. Uso Agroforestal.

Son aquellas tierras que se encuentran con sistemas combinados, es decir, que tienen usos pecuarios y forestales, en arreglos diferenciados de manera espacial y/o temporal. Esta categoría se dividen en tres subcategorías: Arreglos silvopastoriles, Arreglos agrosilvícolas, Arreglos agrosilvopastoriles.

- **Arreglos silvopastoriles**, se refiere a los usos agroforestales que están establecidos en áreas de uso forestal, donde se integran especies arbóreas y/o arbustivas que pueden ser maderables, con usos pecuarios.
- **Arreglos agrosilvopastoriles**, son los usos agroforestales que están establecidos con áreas en usos forestales, con integrados de especies arbóreas y/o arbustivas que pueden ser maderables o no, combinada con usos agrícolas y/o usos pecuarios.

2.2. Marco teórico para la evaluación de la degradación de las tierras.

El proyecto internacional LADA (Evaluación de la Degradación de Tierras en Zonas Áridas) tiene como objetivo evaluar el alcance y las causas de la degradación de tierras en zonas áridas. El LADA surgió como un requerimiento de los países participantes en el marco de la Convención de las Naciones Unidas de Lucha contra la Desertificación (UNCCD), de contar con una metodología estandarizada de evaluación de la desertificación, por lo tanto, la metodología propuesta por LADA sirvió como una herramienta de evaluación que puede ser adoptada por todos los países afectados por la desertificación.

Se debe destacar que en la Decisión 19, del 8vo. período de sesiones de la UNCCD, los 194 países parte acordaron tener en cuenta las metodologías y los resultados globales y nacionales del LADA como aporte para la definición y selección de indicadores de impacto de la desertificación dentro del marco de aplicación de la UNCCD.

El proyecto LADA se ejecutó entre los años 2007 y 2011 bajo el apoyo del Fondo para el Medio Ambiente Mundial (GEF) y el Programa de Naciones Unidas para el Medio Ambiente (UNEP) en 6 países (figura 1) como Argentina, para la región de Sudamérica; China, para la región este de Asia; Cuba, para la región América Central y el Caribe; Senegal, para África del oeste; Sudáfrica, para la región Meridional, Central y Este de África; y Túnez, para África del norte y del Mediterráneo. Todos estos países presentan diferentes características, ambientales, sociales y culturales, y mediante la aplicación de las mismas metodologías de evaluación de la desertificación propuesta por el proyecto LADA, han generado adaptaciones de la misma que son útiles para los países de su región desarrollando herramientas de evaluación.
En el marco del proyecto DS-SLM o en español SD-MST, Soporte a la Toma de Decisiones para la Integración y la Ampliación del Manejo Sostenible de Tierras, participan 15 países (figura 2) como Bangladés, China, Filipinas y Tailandia, para la región de Asia; Nigeria, Lesoto, Túnez y Marruecos, para la región de África; Argentina, Colombia, Ecuador y Panamá, para la región de Sudamérica y América Central; y Turquía, Bosnia Herzegovina y Uzbekistán, para la región del Este de Europa y Asia Central; bajo el apoyo del GEF y la Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO) incorporando a la metodología LADA, la metodología WOCAT (Panorama mundial de enfoques y tecnologías de conservación) entre los años 2015 y 2018. La figura 4 indica los países con actividades WOCAT.

Figura 1. Países que actualmente utilizan la metodología WOCAT/LADA.

Figura 2. Países del proyecto DS-SLM.

Es por eso, que la conjunción de las misiones de los proyectos LADA y WOCAT permite incrementar sus sinergias y hacer más eficiente los métodos de evaluación de las tierras áridas y semiáridas en los tres niveles de evaluación (local, nacional y global).

2.2.1. Metodología LADA.

LADA busca establecer e implementar una metodología comprensiva para la evaluación y el mapeo de la degradación de la tierra. La posibilidad de generar mapas se soporta en la herramienta de cuestionarios de mapeo (MapQuest - Mapping Land Use Systems at global and regional scales for Land Degradation Assessment Analysis), que en español indica “Un cuestionario para posibilitar la realización de Mapas de la Degradación de la Tierra y el Desarrollo de Mecanismos para el Manejo Sostenible de la Tierra”.

Para esto se debe partir de información básica cartográfica, como es la clasificación de los sistemas de uso de las tierras (SUT), en ingles Land Use Systems (LUS).
Los mapas utilizados poseen información sobre la cobertura vegetal, las zonas con riego en donde se hace agricultura intensiva, las áreas protegidas o reservas naturales y la densidad de cabezas de ganado en áreas de uso agropecuario. Mediante la integración de dicha información se realizó la cartografía inicial de los SUT que fue sometida a correcciones y ajustes mediante información adicional proveniente de otras fuentes biofísicas y socioeconómicas. Los ajustes se realizaron a través de un marco ordenador que aplica un modelo que integra los aspectos ambientales con todas las estadísticas socioeconómicas, de manera de describir los impactos de los sectores sociales y económicos en el ambiente. El modelo se basa en el paradigma de la conjunción de las fuerzas motrices que producen los cambios y los impactos que surgen de ellas en el ecosistema y se describe con la sigla FPEIR que proviene de la unión de las iniciales de los factores intervinientes: Fuerza motrices – Presión – Estado – Impacto – Respuesta. La metodología LADA al utilizar el modelo FPEIR hace una evaluación de la conjunción de información proveniente de las fuerzas motrices, los niveles de presión sobre los sistemas, los resultados de la evaluación del estado actual de la tierra y los grados de impacto y de respuestas del ambiente evaluado. Por lo tanto, la definición y cartografía de los diferentes sistemas de uso de la tierra (SUT) obtenida mediante la metodología LADA proporciona una mejor comprensión del fenómeno de la degradación de la tierra, y proporciona las pautas para el logro de respuestas apropiadas de reparación de los impactos negativos en todas las escalas de evaluación.

Así, el proyecto LADA busca establecer e implementar una metodología comprensiva para la evaluación y el mapeo de la degradación de la tierra. La evaluación del LADA es desarrollada en 3 escalas espaciales (local, nacional y global), y considera el estado, las fuerzas motrices y los impactos. Finalmente, el LADA proporcionará una mejor comprensión del fenómeno de la degradación, y dará los indicios sobre las respuestas apropiadas en todas las escalas de nivel.9

2.2.2. Metodología WOCAT.

El Panorama mundial de enfoques y tecnologías de conservación (WOCAT) tiene la misión de apoyar la investigación y los procesos de toma de decisión en el Manejo Sostenible de Tierras (MST), particularmente en relación con la Conservación del Suelo y el Agua. El principal objetivo del Manejo sostenible de Tierras (MST) es promover la convivencia de los humanos con la naturaleza con una perspectiva de largo plazo, de forma tal que la provisión, regulación, cultura y los servicios de apoyo del ecosistema, sean garantizados. El MST es un prerrequisito esencial para el desarrollo sostenible. El Manejo Sostenible de la Tierra se define como el uso de los recursos de la tierra, incluyendo el suelo, el agua, los animales y las plantas, para la producción de bienes destinados a satisfacer las necesidades humanas, mientras que simultáneamente garantiza el potencial productivo de largo plazo de esos recursos y el mantenimiento de las funciones ambientales.10

WOCAT, la Reseña Mundial de Enfoques y Tecnologías de la Conservación lanzada en 1992, en colaboración con algunas instituciones y coordinada por la Universidad de Berna, Suiza, es un proyecto de la Asociación Mundial de la Conservación del Suelo y del

9 Un cuestionario para posibilitar la realización de Mapas de la Degradación de la Tierra y el Desarrollo de Mecanismos para el Manejo Sostenible de la Tierra - CDE/WOCAT, FAO/LADA, ISRIC, 2008.
10 BIS.
Ambiente (WASWC). El proyecto aspira a promover la integración de métodos exitosos en la conservación de agua y suelos y usos de la tierra en todo el mundo. La FAO está involucrada en talleres regionales en curso y en la recopilación de datos de África. La visión general africana en la actualidad servirá como punto de entrada para la iniciativa del Plan Internacional para la Conservación y Rehabilitación de Tierras en África (ISCRAL) basado en país por país. WOCAT utiliza las siguientes diferencias:

- Conservación del suelo y del agua (SWC). En el contexto de WOCAT, se define como: las actividades a nivel local que mantienen o aumentan la capacidad productiva de la tierra en áreas afectadas por o propensas a la degradación. SWC incluye la prevención o la reducción de la erosión del suelo, consolidación y la salinidad; la conservación o drenaje del suelo; el mantenimiento o mejoramiento de la fertilidad del suelo.
- Tecnologías de SWC. Las tecnologías de SWC son medidas agronómicas, vegetativas, estructurales, y de gestión que controlan la degradación del suelo y aumentan la productividad del campo.
- Enfoques de SWC. Los enfoques de SWC son modos y medios del apoyo que ayudan a introducir, implementar, adaptar y aplicar las tecnologías SWC en el campo.

La evaluación de la degradación de las tierras se realiza mediante cuestionarios conformados por un conjunto de preguntas sobre variables sistematizadas en formularios, que sirven para lograr información sobre datos de localización de expertos, clasificación de los sistemas de uso de la tierra, indicadores de estado, impacto y presión de la degradación de la tierra, indicadores de respuesta para la conservación de la tierra mediante prácticas de manejo sostenible de tierras y recomendaciones de expertos. Esta información recolectada puede sistematizarse mediante la base de datos online del WOCAT/LADA, ver en www.wocat.net/databs.asp.
3. CARACTERIZACIÓN DEL ÁREA PILOTO A NIVEL LOCAL

Para definir el área piloto a nivel local, se tuvo en cuenta el área piloto a nivel subnacional (Departamentos del Atlántico, Bolívar, Sucre y Córdoba) definida anteriormente a partir de los avances e insumos (cartografía escala 1:100.000) que se tienen a nivel nacional (Colombia) como, el programa nacional para el monitoreo de la degradación de suelos y tierras (MADS, IDEAM), la zonificación de la degradación de suelos por erosión (IDEAM, 2015) y por salinización (IDEAM, 2017), la zonificación de cobertura terrestre (IDEAM, 2010-2012) y los estudios de inventario de suelos (IGAC). Adicionalmente se evaluó información cartográfica existente a escala 1:100.000, relacionada con temáticas de cobertura terrestre, cambio de cobertura de bosque a no bosque, conflictos de uso, suelos, zonas climáticas, pendientes, relieve, aptitud de uso, degradación de suelos, déficit hídrico, escenarios climáticos, entre otras; con el objeto de analizar las características biofísicas y ambientales del territorio Colombiano e identificar y determinar el área piloto a nivel subnacional, para la evaluación de la degradación de tierras que conlleva a la toma de decisiones para la incorporación y ampliación del manejo sostenible de la tierra.

Revisada y analizada la caracterización biofísica y ambiental del territorio colombiano, se definió el área piloto de trabajo a nivel subnacional (mapa 3) comprendida por cuatro departamentos: Atlántico, Bolívar, Sucre y Córdoba, con un área aproximada de 6.570.500 hectáreas, área que cumplió con características para la implementación de la metodología de evaluación de la degradación de las tierras (WOCAT/LADA). Ver en el documento “Evaluación de la degradación de las tierras nivel subnacional” (UPRA-FAO 276-16, 2018)

Definida el área piloto a nivel subnacional se procedió a definir el área piloto a nivel local, la cual debía extraerse del área piloto a nivel subnacional garantizando que cumpliera con las características para la implementación de la metodología de evaluación de la degradación de las tierras (WOCAT/LADA). Adicionalmente debía identificarse una subregión que haya presentado situaciones de conflicto armado y posibilidades de desarrollo con modelos productivos.

Teniendo en cuenta que el área piloto a nivel subnacional se encuentra dentro de la región caribe de Colombia, se procedió a identificar las subregiones naturales de la misma, como son:

- Península de La Guajira.
- Valles del alto Cesar y del alto Ranchería.
- Sierra Nevada de Santa Marta.
- Delta del río Magdalena.
- Montes de María.
- Sabanas de Córdoba, Sucre y Bolívar.
- Valles aluviales de los ríos Sinú y alto San Jorge.
- Depresión momposina.
- Región de La Mojana.
- Golfo de Urabá.
- Aguas territoriales en el mar Caribe.
Identificadas y analizadas las subregiones naturales del caribe, se determina que “Montes de María” cumple con la localización geográfica del área piloto a nivel subnacional, como
con situaciones de conflicto armado y posibilidades de desarrollo con modelos productivos.

Montes de María es una subregión geográfica ubicada entre los departamentos de Bolívar y Sucre en la región Caribe colombiana. La subregión está integrada por 16 municipios, nueve del departamento de Sucre (Ovejas, Chalán, Colosó, Morroa, Los Palmitos, San Onofre, San Antonio de Palmito, Toluviejo, Corozal) y siete del departamento de Bolívar (El Carmen de Bolívar, María la Baja, San Juan Nepomuceno, San Jacinto, Córdoba, El Guamo y Zambrano). Ver mapa 4

Los Montes de María están compuestos por montañas cuyas mayores alturas apenas si sobrepasan los 1.000 msnm (sobresalen los cerros Maco, Cansona y la Pita, de acuerdo a su altura msnm), son utilizados para la ubicación de torres de radio-comunicaciones y poseen características climatológicas y físicas propias. Además, en esta se encuentra una pequeña zona protegida la cual es el Santuario de fauna y flora Los Colorados y los petroglifos de Arroyo Rastro de la cultura zenú, parte de esta en el Museo Comunitario de San Jacinto.

Mapa 4. División Sociopolítica de la Subregión Montes de María. (Estrategia Colombia Responde)

Con la necesidad de trabajar a escala 1:25.000, el área de la subregión “Montes de María” se reduce a un área municipal. Para esto se identificó un municipio dentro de montes de maría que cuente con diferentes características físicas del territorio tanto en la geomorfología como en el clima; sustente su economía en actividades agropecuarias, con tradición en ganadería bovina, cultivos campesinos y comerciales; que presente problemas de degradación en las tierras; que haya estado limitado por los problemas de violencia e inseguridad; que cuente con posibilidades de desarrollo bajo modelos productivos; y que cuente con la construcción de instrumentos de planificación.

Teniendo en cuenta lo anterior, se definió el área piloto de trabajo a nivel local (mapa 5) comprendida por el municipio de San Juan Nepomuceno, perteneciente al departamento
Evaluación de la degradación de las tierras a nivel local – San Juan Nepomuceno (Bolívar)

Mapa 5. Mapa del área piloto a nivel local.
Evaluación de la degradación de las tierras a nivel local – San Juan Nepomuceno (Bolívar)

de Bolívar. El área piloto a nivel local se desarrolló cartográficamente a escala 1:25.000, bajo el límite oficial del IGAC (Base cartográfica del 2017) que cuenta con un área de 63.455,9 hectáreas.

El municipio se caracteriza por un clima cálido, con temperatura media anual del orden de 27,7 °C. La pluviosidad del municipio varía entre 800 y 1500 mm anuales, cuyo incremento es hacia el sector occidental a medida que se asciende por las vertientes, lo cual representa regímenes de humedad semihúmedos y semiáridos. La mitad de las lluvias caen en Agosto y Noviembre, periodo en que la época de lluvias es más intensa. El promedio anual de precipitación del municipio es de 1400 mm.

Cuenta con una variedad en su relieve, presentándose lomas y crestones, espinazos y crestones, lomas, vallecitos, glaciares de acumulación y planes de inundación. Dentro de éste relieve se encuentra el Santuario de fauna y flora Los Colorados, reserva fundamental de la especie del mono colorado. Las pendientes con las que cuenta el municipio son de 0 al 3%, del 3 al 7%, del 12 al 25% y del 25 al 50%.

La economía del municipio de San Juan Nepomuceno, se da principalmente por la Ganadería y la Agricultura.

Según datos nacionales del Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM), Ministerio de Ambiente y Desarrollo Sostenible y la Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A.), se estimó que en el año 2015 el municipio de San Juan Nepomuceno presentaba grados de degradación de suelos por erosión con un 6,8% en grado severo, 25,5% en grado moderado y 50,5% en grado ligero. Adicionalmente se estimó que en el año 2017 el municipio de San Juan Nepomuceno presentaba grados de degradación de suelos por salinización con un 2,5% en grado muy severo, 83,7% en grado moderado y 7,8% en grado ligero.

El municipio de San Juan Nepomuceno no es ajeno a las situaciones de conflicto armado, pues estar ubicado en montes de maría lo ha limitado por los problemas de violencia e inseguridad. El diario Partido Comunista Colombiano (PCC) el 1 de septiembre de 2017, recuerda el asesinato de varios campesinos indefensos: “Los días 30 y 31 de agosto de 2002 la vida apacible del corregimiento de “Los Guáimaros”, municipio de San Juan Nepomuceno, norte de Bolívar, región de los Montes de María, fue sacudida por una pesadilla de terror y sangre, al irrumpir una banda de desconocidos uniformados y armados, que mataron a varios campesinos indefensos, casi todos unidos por lazos familiares o de amistades remotas en muchos años de relaciones sencillas y sin sobresaltos. Poco a poco, el paso del tiempo reveló que los verdugos de "Los Guáimaros" dijeron pertenecer a una banda paramilitary llamada "héroes de los Montes de María", que contó con fondos aportados por La Gata y Salvatore Mancuso, asesinos de ingrata recordación en la Región Caribe.” (MUÑOZ, 2017)

El diario “El Universal” el 29 de octubre de 2013, recuerda la reparación de víctimas: “El Ministerio de Cultura, la Unidad de Víctimas de Bolívar y la Alcaldía de San Juan Nepomuceno, entregaron ayer en el corregimiento de Las Brisas un kiosco comunitario en homenaje a las 12 personas asesinadas en el año 2.000 por el bloque “Héroes de los Montes de María”, de las Autodefensas Unidas de Colombia (Auc). Así mismo, en la plaza Olaya Herrera de este mismo municipio, se levantó un monumento por todas las personas masacradas víctimas de la violencia en cumplimiento de uno de los exhortos de la
Sentencia Mampuján, Las Brisas y San Cayetano, de la Sala de Justicia y Paz del Tribunal Superior de Bogotá. Por su parte el alcalde Gustavo Castillo Acevedo, resaltó las dificultades que padeció la población sanjuanera, las cuales esperan no se repitan.” (VILLARREAL, 2013)

El municipio de San Juan Nepomuceno cuenta con el desarrollo de modelos productivos, como es el Modelo Agroforestal Finca Montemariana (MAFM), el cual se caracterizó en la región de Montes de María (Bolívar, Colombia), bajo el enfoque de multifuncionalidad de la agricultura, a partir de la descripción de los sistemas, subsistemas y de la Estructura Agroecológica Principal (EAP) de cuatro fincas, tres de las cuales son representativas del modelo, y la otra una finca ganadera que sirvió como referente de análisis. Se valoraron nueve funciones múltiples, agrupadas en funcionalidad productiva, ecosistémica y cultural.

Se encontró que el MAFM, como modelo productivo, es una propuesta de innovación tecnológica construida a partir del sincretismo tecnológico entre conocimientos empíricos locales y técnicos expertos. La valoración de la EAP mostró valores entre 61 y 84 para las fincas representativas del MAFM y de 47 para la finca ganadera de referencia. La valoración de las funciones múltiples reflejó la heterogeneidad de las fincas, con tasas anuales de diversificación productiva entre 14,8% y 29,2% para un periodo de 12 años. Los niveles de autoconsumo varían entre 37% y 64%. El mayor valor de resiliencia potencial (4,7/5) se da en la finca con mayor número de tecnologías agroforestales diversificadas, y disminuye hasta 2,6/5 en la finca ganadera de referencia. La valoración relativa de la función recreación muestra valores de 0,7 para fincas menos estructuradas y entre 0,8 y 1 para fincas altamente estructuradas. (ZIPACON, 2016)

Adicionalmente el municipio de San Juan Nepomuceno se encuentra en la construcción de un instrumento de planificación, como es el Plan de Ordenamiento Territorial (POT), por medio de la Sociedad Colombiana de Arquitectos (SCA) localizada en la ciudad de Barranquilla. Sociedad con la que se tuvo conversaciones para incorporar la evaluación de la degradación de las tierras del municipio, referente a los sistemas de uso de las tierras y la degradación de las mismas.

3.1. Montes de María. 11

La subregión Montes de María (MM) está ubicada en la parte central de los departamentos de Bolívar y Sucre en el Caribe colombiano. La subregión está integrada por quince municipios que ocupan cerca de la quinta parte del área total departamental. En el departamento de Bolívar: Córdoba, El Carmen de Bolívar, El Guamo, María La baja, San Jacinto, San Juan Nepomuceno y Zambrano; en el departamento de Sucre: Ovejas, Chalan, Colosó, Morroa, Toluviejo, Los Palmitos, San Onofre y Palmito. La superficie total es de 6.297 km². Se trata de una zona que posee gran biodiversidad de flora y fauna. Las actividades económicas giran alrededor de la producción agropecuaria, con tradición en ganadería bovina y cultivos campesinos de maíz, arroz, yuca, ñame, plátano, tabaco, café y aguacate. Recientemente, se han introducido cultivos empresariales de ají picante, cacao y palma de aceite. (Aguilera Díaz, 2013)

La biodiversidad está conformada por bosques secos tropicales y manglares, recursos hídricos y ecosistemas asociados (ciénagas, lagunas y aguas subterráneas), formaciones coralinas, playas marinas y una variedad de flora y fauna. Los bosques albergan una diversidad de fauna y son productores de agua pero han sido afectados por la deforestación, que ocasiona problemas ambientales de deslizamientos, erosiones de suelos y deterioro del hábitat de la fauna. Además, las actividades agropecuarias de subsistencia que se realizan en laderas empinadas y nacimientos de cuencas hidrológicas causan daños ambientales a los recursos naturales. Para controlar estos factores negativos fueron creadas dos zonas de reservas naturales protectoras con el objeto de conservar, estudiar e investigar los recursos hídricos, la fauna y la flora. Estas zonas son la Reserva Forestal Protectora Serranía de Coraza y Montes de María y el Santuario de Fauna y Flora Los Colorados, que tienen potencial para el ecoturismo.

Adicional a los problemas ambientales, en las últimas tres décadas, la subregión MM fue azotada por la violencia de grupos al margen de la ley. Estos tomaron la zona como refugio y corredor estratégico para el tráfico de armas y el negocio de narcotráfico, lo que los llevó a través de la vía armada a apoderarse de tierras, causando el desplazamiento forzado de muchas familias y la disminución de las actividades económicas. Para darle solución a estas problemáticas sociales, ambientales y económicas, los gobiernos local, departamental y nacional, en colaboración con organismos internacionales, elaboraron proyectos de desarrollo rural con la participación de pequeños productores. Estas iniciativas buscan el desarrollo rural sostenible y el trabajo colectivo de los pequeños productores rurales, aprovechando el potencial agropecuario, minero, pesquero, artesanal y de ecoturismo existente en la zona.

3.1.1. Características geográficas, ecológicas y ambientales de MM.

La subregión de Montes de María (MM) tiene una extensión de 6.297 Km², de los cuales 3.719 Km² corresponden al departamento de Bolívar y 2.578 Km² al de Sucre. Promontes (2003) diferencia tres zonas en el territorio de MM:

- Una zona plana localizada entre la carretera Troncal de Occidente (sector El Vizo-Sincelejo) y el río Magdalena. Corresponden a este territorio los municipios de El Guamo, Zambrano, Córdoba y parte de los municipios de San Juan Nepomuceno, San Jacinto y Carmen de Bolívar. En gran parte, el área está dedicada a la ganadería extensiva y la explotación maderera. Sin embargo, entre la carretera Transversal del Caribe y el Canal del Dique (parte del municipio de María La Baja) se encuentran suelos aptos para la agricultura comercial y con disponibilidad de un importante distrito de riego.

- Una zona montañosa localizada entre la carretera Transversal del Caribe y la Troncal de Occidente y correspondiente a los municipios de Chalán, Colósó, Morroa, Ovejas y parte de los municipios de Toluviejo, San Antonio de Palmito, Los Palmitos, San Onofre, Carmen de Bolívar, San Jacinto y San Juan Nepomuceno. Esta zona montañosa está en la Serranía de San Jacinto (prolongación de la Serranía de San Jerónimo que sigue en dirección Suroeste-nororiente), tiene una longitud de 110 km de largo y una altura aproximada de 700 msnm. Los suelos son ocupados principalmente con cultivos de economía campesina.
• Una zona de litoral situada en el occidente de los MM, la cual corresponde en toda su extensión al municipio de San Onofre, territorio con manglares, grandes paisajes marítimos con posibilidades de ecoturismo y recursos costeros.

El clima es un factor importante para los suelos, la cobertura vegetal y el paisaje. En la subregión MM, el clima está determinado por el efecto de los vientos alisios del norte y del nordeste, la proximidad al mar, el régimen de precipitaciones, la localización del sistema montañoso y la presencia de numerosos cuerpos de agua. Estos elementos conforman una variedad de paisajes y permiten que en la zona se presenten condiciones de régimen climático seco a húmedo de dos pisos térmicos: cálido y medio. La temperatura ambiental está entre 26°C a 30°C en las áreas de clima cálido y entre 20°C y 24°C en las áreas de clima medio. La precipitación anual es, en promedio, de 1.500 mm y la humedad relativa varía entre 75% y 85%. El régimen pluviométrico es bimodal, con valores máximos en los meses de septiembre a noviembre y mayo a junio (Promontes, 2003).

La subregión MM cuenta con tres áreas de reserva forestal que fueron creadas con el objeto de conservar, estudiar e investigar los recursos hídricos, la fauna y la flora. Estas son:

• La Reserva Forestal Protectora Serranía de Coraza y Montes de María, de una superficie de 6.653 hectáreas, situada en el departamento de Sucre entre los municipios de Toluviejo, Colosó y Chalán. Fue creada mediante acuerdo N° 028 de 1983 del Inderena con la finalidad de conservar la fuente de abastecimiento de los acueductos municipales de los tres municipios. En esta reserva nacen arroyos que tienen una duración estacional limitada a las épocas de lluvias y, por tanto, al desaparecer en verano la oferta hídrica se confina a los denominados “ojos de agua” que se forman en las colinas como depósitos de agua. También tiene una riqueza faunística puesto que alberga especies de primates, aves y reptiles, donde se destaca la tortuga carranchina (Mesoclemmysdalhi), especie endémica y críticamente amenazada. Uno de los principales problemas ambientales de la reserva es la deforestación debido al establecimiento de áreas para cultivo y pastizales, así como la cacería y la extracción selectiva de maderas con valor comercial.

• El Santuario de Fauna y Flora Los Colorados está ubicado en el departamento de Bolívar en el municipio de San Juan Nepomuceno. Tiene una extensión de 1.000 hectáreas y fue creado en junio de 1977 por la Resolución Ejecutiva 167, con el fin de conservar áreas naturales poco intervenidas para las investigaciones científicas, actividades recreativas y educación ambiental; proteger espacios productores de bienes y servicios ambientales; conservar y proteger los ecosistemas representativos de la región y la riqueza de la fauna y flora. Es el relictoc de bosque más importante en el sector norte de la Serranía de San Jacinto, ya que presenta una variada vegetación y flora (más de 105 especies de árboles) y en donde se protege una especie de monos colorados aulladores de los cuales proviene su nombre.

• El Santuario de Flora y Fauna El Corchal, Jorge Hernández “El Mono Hernández”, situado en San Onofre (Sucre) y Arjona (Bolívar). Tiene una extensión de 3.850 hectáreas y fue creado para proteger cinco especies de mangles y los bosques de corcho que contiene en su interior. El santuario tiene 57 hectáreas de planos fluviomarinos ubicado en cercanía del litoral, 312 hectáreas de ciénagas manglárneas, 28 hectáreas de caños de agua dulce y semidulce que irrigan la zona
deltáica. La fauna que habita en esta área se caracteriza por la adaptabilidad a los ecosistemas inundables. Algunas de las especies son: la zorra manguera, el mono aullador, la guartinaja, el ponche, la tortuga de río, la chavarría, la garza real, el pato barraquete, el pato buzo, el canario de río, entre otras.

Las zonas agrológicas que predominan son tierras de colinas y de piedemonte con relieve ondulado y susceptible a la erosión, seguidas de montañas y serranías y en menor proporción planicies y valles. Acorde con el Cuadro 2, el 19,5% de los suelos tienen aptitud para la agricultura, el 74,6% para pastos, bosques y vida silvestre, y el 5,9% restante para la conservación de vida silvestre y recreación.

El mapa 6 muestra que la fertilidad de la tierra en la subregión MM es variada. En su mayoría es moderada por los contenidos medios de nutrientes, la profundidad de los suelos la alta pedregosidad y ser excesivamente drenados. En el mapa 7, se observa que el mayor uso que se le da a los suelos de esta zona es para el pastoreo y en menor medida en la agricultura y plantaciones forestales para la producción de madera y protección y recuperación de bosques.

Según las cifras del IGAC, la subregión MM cuenta con cerca de 600.000 hectáreas de tierra rural, de las cuales el 19,5% tiene aptitud para uso agrícola (117.000 ha), 29,7% tiene un potencial agroforestal (172.000 ha), el 46% de los suelos tiene vocación forestal y...
el 5,6% restante son para la conservación de la vida silvestre y paisaje. De acuerdo con la exploración real en 2012, el 95% del potencial agrícola es utilizado mientras que se genera una sobreutilización del suelo agroforestal pues su uso real alcanzó las 339.000 ha.

El mapa 7 muestra los conflictos que se dan entre la aptitud del suelo y el uso, notándose tanto sobreutilización como subutilización de las tierras. La primera se representa cuando el uso actual es muy superior a la vocación de uso principal, generando degradación de los recursos naturales y procesos erosivos. Por el contrario, el conflicto por subutilización se presenta cuando el uso actual de la tierra es inferior a la vocación de uso principal, de acuerdo con la mayor capacidad productiva natural, restringiéndose el cumplimiento de la función social y productiva de las tierras.
3.1.2. Actividades económicas en MM.

La subregión MM tiene el 48,3% de sus suelos con potencial agrícola y agroforestal y el 42,7% de su población es rural. Sus principales cultivos tradicionales son el maíz, el arroz, la yuca, el ñame, el aji, el plátano, el tabaco, el café, el aguacate, los maderables y los frutales. Recientemente se han incorporado nuevos cultivos comerciales como la palma africana, el ajo picante y el cacao. Dentro de las actividades pecuarias, la ganadería vacuna es la de mayor importancia. También se destaca la apicultura.

La producción industrial es incipiente, aunque existen procesos artesanales de curtiembre, fabricación de tejidos y sombreros, producción de tabaco picado y secado manual de la yuca. En el sector de servicios aún no hay actividades importantes en desarrollo, pero se tiene potencialidad en ecoturismo, gracias a las áreas protegidas como los Santuario de Flora y Fauna Los Colorados, El Chorchal “EL Mono Hernández” y la Reserva Forestal Protectora Serranía de Coraza y Montes de María.

Una alternativa de desarrollo sostenible que viene promoviendo la Fundación RED Desarrollo y Paz de los Montes de María, es la “finca monteriana”, un sistema productivo donde se cultiva yuca, ñame, maíz, mango, plátano, zapote, guayaba, naranja, limón, aguacate, cacao, teca y caoba, entre otros. Se trata de un sistema agroforestal basado en un manejo integral de los recursos naturales, arraigo familiar, pertenencia por el territorio y protección ambiental de los suelos, con el fin de mejorar la seguridad alimentaria y nutricional de las familias, restablecer el equilibrio biológico en corredores naturales,
diversificar la producción y generar ingresos a los productores. Cada familia debe disponer de una hectárea para cultivos transitorios, además integrar cultivos semipermanentes y permanentes, así como hortalizas y especies menores. Hasta abril de 2012, habían registradas 935 fincas montemarianas financiadas con recursos del programa Paz y Desarrollo (347 fincas), del Tercer Laboratorio de Paz (528 fincas) y la Unión Europea- CHF (60 fincas). Los costos generales de la instalación de una finca montemariana perteneciente a Asoapicol (Colosó-Chalá-Morroa) fue de 7,3 millones de pesos, en un modelo que incluye el cacao y la conservación ambiental (Muñozca, 2012).

3.2. San Juan Nepomuceno (Bolívar).12

San Juan Nepomuceno, desde 1989, fecha en que se declaró "Municipio Verde de Colombia", ha fortalecido su vocación conservacionista, ampliando sus áreas protegidas, ancladas en el corazón de los Montes de María, superando su pasado inmediato golpeado por la violencia de los grupos armados que durante muchos años y con una evidente recuperación de sus distintas fuerzas productivas. (SCA, 2018)

Su cabecera está localizada en las coordenadas 9º 37 latitud norte y 74º 15 longitud oeste, limita por el norte con los municipios del Guamo y Calamar, por el este con el municipio de Mahates y por el oeste los municipios de Zambrano y San Jacinto, por el sur con los municipios de San Jacinto y María la Baja (mapa 9). Tiene una extensión aproximada de 64.397,5 Ha, que equivalen al 1,53% del total del departamento de Bolívar. Tiene una altura de 167 msnm. La extensión del área urbana es de 357.17 Ha, la temperatura media es de 27,7 ºC, la densidad es de 52.54 h/km² y una población aproximada de 32.514 habitantes. Está topográficamente determinado por los montes de María, con zonas donde se presentan pendientes muy variadas y máximo de 50º.

De las 64.397,5 Ha, 52.800 Ha, se dedican al pastoreo y 7.050 a cultivos diversos, 6.500 a bosques y 1.150 a usos variados. Siguiendo el Programa de las Naciones Unidas para el Desarrollo (PNUD), el índice de ruralidad (IR) del municipio para 2013 fue equivalente a 44,3, evidenciando que San Juan Nepomuceno es un territorio más rural que urbano, ya que un índice de ruralidad por encima de 40 puntos les otorga esta calificación a los municipios (Buitrago, 2006).

Su ubicación estratégica en el Departamento, lo coloca como epicentro de intercomunicaciones y centro de interconexión vial de la troncal de occidente.

El municipio de San Juan Nepomuceno se encuentra ubicado en el centro del departamento de Bolívar, en la llamada Zona de Desarrollo Económica y Social (ZODES) de los Montes de María. Aunque un alto porcentaje de los suelos del municipio son aptos para la agricultura, la producción forestal y la ganadería, entre otras actividades productivas, el uso frecuente de prácticas inadecuadas de preparación y manejo de los suelos ha resultado en su compactación, la fragmentación de los ecosistemas, erosión, salinización, contaminación por agroquímicos, pérdida de la BD y degradación del hábitat. El NBI del municipio es 67,87%.

12 San Juan Nepomuceno, Bolívar Plan Básico de Ordenamiento Territorial. Sociedad Colombiana de Arquitectos. 2018.
Desde la perspectiva subregional cabe reconocer la importancia del municipio de San Juan Nepomuceno como líder de una ecoregión. Desde la perspectiva departamental, se señala la existencia de una estrecha relación funcional entre el municipio de San Juan Nepomuceno y las ciudades de Cartagena y Barranquilla, Sincelejo y Montería, articulados por el eje que representa la carretera Troncal, además por la dependencia socioeconómica con estos conglomerados urbanos de donde se nutre de bienes y servicios. De igual manera, los vínculos con la administración del Departamento son
significativamente importantes no solo desde el punto de vista político-institucional, sino como fuente de apoyo para el desarrollo de proyectos de impacto local.

La subregionalización mediante la división en zonas de desarrollo denominadas ZODES, es un esquema de planificación del territorio de modo estratégico, ZODES Montes de María, de la cual San Juan Nepomuceno forma parte (mapa 10). De alguna manera es un agrupamiento estratégico basado en criterios económicos, políticos y sociales, que podrían fortalecer las posibilidades reales de que este municipio lidere la subregión en el centro del departamento.

3.2.1. Sistema biofísico de San Juan Nepomuceno.

El clima de San Juan Nepomuceno está clasificado como tropical. Los veranos son mucho más lluviosos que los inviernos en San Juan Nepomuceno. De acuerdo con Köppen y Geiger clima se clasifica como Aw. La temperatura aquí es en promedio 27.1 ° C. Hay alrededor de precipitaciones de 1370 mm. El clima de la región es típicamente tropical con influencia de los vientos alisios que predominan durante algunos meses del año, lo que determina variaciones en temperatura, humedad relativa y precipitación. En términos generales, los meses de mayo a noviembre son los más lluviosos; esporádicamente, ocurren en el período de lluvias aguaceros torrenciales en áreas reducidas, normalmente acompañados de tormentas eléctricas. El período seco está comprendido entre los meses de diciembre y abril. En algunos años se ha registrado un período seco secundario llamado Veranillo de San Juan hacia los meses de julio a agosto.

En el área de estudio se distinguen dos paisajes, el de colinas y el de zonas planas. El primero presenta variaciones de altura entre 50 y 500 m, ocupa la parte meridional y central de la plancha y cubre aproximadamente 575 km² al sur del Canal del Dique y otra
amplia faja al oriente del río Magdalena, que hace parte de las estribaciones más bajas y septentrionales de la Serranía de San Jacinto. Dentro del gran paisaje de colinas se destacan por su mayor altura aquellas constituidas por rocas más resistentes a la meteorización, caracterizadas por su forma alongada lineal, pendientes fuertes, rectilíneas que corresponden en algunos casos a pendientes estructurales, como, por ejemplo, la Serranía de Songó, al norte de San Cayetano. Presentan un contacto abrupto con las colinas adyacentes y con los valles entre colinas. Otra unidad de colinas altamente disecadas que se observa en la zona es aquella formada por lodolitas y calizas generalmente en estratos muy inclinados a casi verticales. Al oriente del río Magdalena las colinas están disecadas y han generado un relieve suavemente ondulado

En las zonas planas se distinguen las áreas no inundables, de transición entre las colinas, y las zonas más bajas; presentan pendientes suaves, con algunas disecciones, vegetación de bosque muy seco, constituidas por sedimentos de piedemonte, terrazas y diques de la planicie fluvial del río Magdalena. En las áreas inundables se pueden distinguir aquellas sujetas a inundación por períodos cortos no regulares y otras sometidas a la acción periódica y prolongada de aguas como los playones y bajos.

De acuerdo con el análisis del mapa de cobertura de tierras del IDEAM 2010-2012, se agruparon las clases de las coberturas en categorías, arrojando un 45.3% de vegetación endémica de la zona, con un 38.6% cobertura de pastos, 0.9% de cultivos, 0.7% de cuerpos de agua, 0.6% asentamientos urbanos y 0.5% con tierras desnudas y degradadas. En cuanto a conflictos de usos del suelo del mapa de IGAC, se puede observar que existen conflictos por sobreutilización del suelo en todo el municipio.

El ecosistema Zonobioma seco tropical del Caribe, se caracteriza por encontrarse en zonas de clima cálido seco (91%) y cálido muy seco (9%), las cuales están sobre lomeríos estructurales y fluvigravitacionales (56%), piedemontes aluviales y coluvio-aluviales (22%) y planicies aluviales, fluvimarinas y eólicas (20%), donde predominan las coberturas de la tierra de pastos (61%), vegetación secundaria (13%), áreas agrícolas heterogéneas (9%) y arbustales (7%).

El municipio de San Juan Nepomuceno cuenta con un sistema de áreas para la conservación y preservación del sistema hidrico. Este sistema está conformado por elementos naturales, relacionados con corrientes de agua, tales como cuencas, microcuenca, ríos, quebradas, arroyos, rondas hídricas y zonas de manejo y protección ambiental (Concejo Municipal de San Juan Nepomuceno, 2002). Las rondas de río de San Juan Nepomuceno son las siguientes: ronda del arroyo Salvador, ronda del arroyo Rastro, ronda del arroyo Catalina, ronda del arroyo Grande, ronda del arroyo La Haya, ronda del arroyo Toro, ronda del arroyo Badilla, ronda del arroyo Las Limas, ronda de arroyo Pozón, ronda del arroyo Madre Vieja y ronda del arroyo El Guamo. La zona urbana de San Juan Nepomuceno se encuentra regada por el suroeste, por el arroyo Rastro que es el de mayor caudal y nace en el cerro de Maco en la serranía de San Jacinto. Por el centro, el arroyo El Salvador que nace en la serranía de Reventón, atraviesa la población y desemboca en el arroyo Rastro. Por último, el arroyo Catalina, con nacimiento en el cerro el Balcón, tiene un recorrido de seis kilómetros, bordea la población por su lado norte y desemboca en el arroyo Grande que recorre los corregimientos de San José del Peñón, Corralito y San Agustín, para verter sus aguas al río Magdalena.
Complementan este recurso hídrico, las ciénagas de Moja Papo, Playón, Severa y Matuya, junto a lagunas, trancas y/o pozas construidas por dueños de fincas con el fin de recoger aguas lluvias, usadas para abrevaderos de animales, abastecimiento para el consumo humano y uso doméstico.

El Santuario de Flora y Fauna “Los Colorados”, debido a la dinámica poblacional del municipio, conserva sólo 1.000 hectáreas de las 1.230 que poseía inicialmente, según el Inventario Ambiental Departamental de 1986. Esta zona fue declarada Santuario de Flora y Fauna por el Ministerio de Agricultura, de acuerdo con la resolución N° 167 de 1977 por la biodiversidad en su ecosistema natural.

El bosque constituye el aspecto más interesante del Santuario. Es higrotropofítico con árboles que alcanzan alturas entre 20, 25 y 35 m. Dentro de las especies arbóreas podemos mencionar a la Ceiba, Hobo, Guaymaro, Banco, indio encuero, Siete Cuero, Guayacán, Membrillo, Roble, Camarón, Higo, Dividivi, Aceituno, Bonga, Guáxico, Carreto, Cedro. También hay una diversidad en plantas medicinales como Verbena, Llantén, Albahaca, Orégano, Sábila, Eucalipto y Balsamina. El área boscosa del Santuario se encuentra en el rango distintivo de bosque seco tropical del Caribe. Es de vegetación con follaje semideciduo o totalmente deciduo y con dosel arbóreo alto cerrado.

Con relación al peligro por deslizamiento e inundaciones, las intensas temporadas de lluvia en el municipio (período conocido como el fenómeno de la niña) provocan el deslizamiento de las laderas de los arroyos, amenazando la estabilidad de la población que habita en sus alrededores.

Con respecto a los índices de escasez y de vulnerabilidad, de acuerdo con el Estudio Nacional de Agua, San Juan Nepomuceno es un municipio con necesidad de ordenamiento de su oferta hídrica con relación a la demanda en procura de evitar futuras crisis. Esta situación se debe a que la demanda hídrica del total del municipio (índice de escasez) corresponde al 43,2% del total de la oferta disponible, cualitativamente este porcentaje se relaciona con un alto índice de vulnerabilidad por disponibilidad del recurso. A nivel de cabecera municipal, la situación es homóloga, no obstante a que se reduce la demanda y la escasez es menos pronunciada.

Los suelos del Municipio de San Juan, son de origen ígneo y sedimentario, desarrollados a partir de los materiales que el río Magdalena y sus afluentes han depositado en las áreas más bajas de la llanura aluvial del municipio.

El Instituto Geográfico Agustín Codazzi, IGAC, en su Estudio General de Suelos de los Municipios que conforman los Montes de María, han clasificado los suelos de San Juan como planicies fluvio lacustres. Estos son suelos ígneos y sedimentarios, presentan relieve ondulado, plano y plano cóncavo, con pendientes muy variadas. Los sitios de topografía más baja, con relieve cóncavo sufren inundaciones periódicas. A pesar de encontrarse el área de estudio en un medio ambiente climático de Bosque Seco Tropical (bs-T), estos suelos de planicie fluvio lacustre tienen régimen de humedad údico y ácuico.

La mayoría de los suelos presenta valores altos de densidad aparente (1.45 a 1.80 g/cc). Son escasos los suelos con valores bajos (menos de 1.20 g/cc). La retención de humedad y el agua disponible para la mayoría de los suelos se consideran media (entre 20 y 40); solo un bajo porcentaje, especialmente los ricos en limos y arcilla tienen retención alta.
3.2.2. Sistema social de San Juan Nepomuceno.

Siguiendo al PNUD, el índice de ruralidad (IR) del municipio para 2013, fue equivalente a 44,3, evidenciando que San Juan Nepomuceno es un territorio más rural que urbano, ya que un índice de ruralidad por encima de 40 puntos les otorga esta calificación a los municipios (Buitrago, 2006).

La población total de San Juan Nepomuceno entre 1993 y 2013 tuvo un incremento de 6,36%, pasando de 31.245 habitantes en 1993 a 33.231 en 2013. No obstante, es importante mencionar que el crecimiento neto de la población municipal durante estos 20 años fue resultado del incremento de la población del área urbana (30,12%) y la reducción de la población rural (35,49%). Desde el enfoque de género la proporción de la población mujeres es del 52% y hombres 48%.

De acuerdo con cifras del Ministerio de Educación Nacional durante el año 2012, en el municipio se reportaron 10.180 matriculados en los grados preescolar (pre-jardín, jardín y transición) primaria, secundaria y media, ubicándose el 50% de esta población, en el nivel primaria, el 28,8% en secundaria, el 11,7% en media y el 9,4% en preescolar. Respecto a la educación superior, para el mismo año, se reportaron 335 matriculados, distribuidos en instituciones de educación superior presentes en San Juan Nepomuceno: Universidad de Cartagena y la Institución de Formación para el Trabajo UNDESO (Unidad Educativa para el Desarrollo Social). Adicionalmente, se analizan los resultados de las Pruebas Saber 11 del municipio durante el período 2011-2013 para validar la calidad de la educación secundaria y media. Los mejores resultados para todas las áreas se presentaron en el año 2012. Específicamente en física, química y biología; sin embargo, los promedios no superan los 50 puntos.

Por otro lado, se analiza la tasa de analfabetismo con base en los datos poblacionales del Censo DANE a corte 2012 y datos del SISBEN a corte 2013.Los resultados muestran que, de acuerdo al DANE, la tasa de analfabetismo del municipio es 24,94% para el total de la población, 23,5% en la cabecera y 28,97% en la zona rural. De acuerdo con datos del SISBEN, el porcentaje de población analfabeta del municipio es 17,6%. Con relación al nivel nacional, el municipio tiene una mayor tasa de analfabetismo, ya que ésta fue de 5,9% en Colombia para 2012. Con relación a las instituciones de formación para el trabajo, en el municipio se encuentran presentes el SENA, UNDESO y la Corporación Técnico Laboral de San Juan.

De acuerdo con las estadísticas del DANE y del municipio, en San Juan Nepomuceno no se reportan datos de población indígena. Sin embargo, en el proceso de caracterización de la población víctima del conflicto armado, realizado por la alcaldía municipal, se registraron aproximadamente 38 personas autodenominadas indígenas. A su vez, según el Informe de Rendición de Cuentas Municipales, el 20% (6.646 personas) de la población de San Juan Nepomuceno se autodenomina afro descendiente, cuyos asentamientos se encuentran en los corregimientos de San Cayetano y La Haya.

De acuerdo con la información de la Red Nacional de Víctimas de la Unidad para la Atención y Reparación de la Presidencia de la República, en el municipio de San Juan Nepomuceno la dinámica de la población víctima durante la década del noventa y los primeros años del nuevo siglo ha mantenido una tendencia creciente, presentándose tres alzas importantes en los años 2000, 2002 y 2006 con 3.498, 4.574 y 4.744 casos
Evaluación de la degradación de las tierras a nivel local – San Juan Nepomuceno (Bolívar)

reportados, respectivamente. Es de anotar que siguiendo el Plan de Desarrollo Municipal (2011), entre 1997 y 2002 la región más afectada fue la región de Bolívar por las masacres especialmente en los municipios El Carmen de Bolívar y San Juan Nepomuceno, en este último municipio a través del bloque norte de las AUC denominado Héroes de Montes de María.

Con relación a la caracterización por género y edad de la población víctima de San Juan Nepomuceno en 2013, se destaca la preponderancia masculina a lo largo de todos los rangos etarios analizados. Los segmentos de edad de mayor peso son: 27 y 60 años (aritméticamente por la cantidad de población que agrupan), entre 0 y 5 años y entre 6 y 12 años. Esta situación puede ser indicio de que la niñez del municipio se ve vulnerada por hechos victimizantes.

Por su parte, la dinámica de expulsión y recepción de población de San Juan Nepomuceno muestra que el municipio ha sido expulsor neto de población víctima entre 1995 y 2013. En este período, se presentaron tres grandes fases de salida y entrada de personas al territorio, en los años en 2000, 2002 y 2006 respectivamente, con valores promedio de 4.100 expulsados y 3.300 recibidos.

San Juan Nepomuceno se encuentra en el recorrido de la denominada Ruta Nacional 25, comúnmente llamada Troncal de Occidente o Troncal Occidental, hace parte del corredor vial Nacional de Colombia que parte del Puente Rumichaca en la Frontera con Ecuador y termina en la ciudad de Barranquilla. Es la principal vía del Occidente del país y hasta el momento la única vía que bordea el Pacífico debido a la no terminación de la Ruta 5.

Según el Decreto 1735 de 2001 del Ministerio de Transporte y a cargo del Instituto Nacional de Vías, la Ruta Nacional 25 fue rebautizada como la Troncal de Occidente y generalmente tomó gran parte de los tramos y ramales que conforma la Ruta 25 aunque también de la Ruta 31 (mapa 11). Tiene una extensión de 1.498,13 km siendo una de las rutas más extensas del país. La ruta se encuentra pavimentada en su totalidad. Hay aproximadamente 120 km en doble calzada que van desde la Ciudad de Cali hasta el sitio de La Paila en el Municipio de Zarzal y desde el Cruce Villa Rica hasta Santander de Quilichao.

El municipio comparte 35 km sobre esta vía, la cual enlaza los tramos carreteros hasta la ciudad de Cartagena y otros destinos.

El transporte local es de total informalidad provisto por moto taxis, motocarros y taxis locales con muy poco control y bajos estándares de seguridad para las personas. Este servicio funciona desde las 5:00 am hasta pasadas las 10:00 pm.

Respecto a las vías fluviales, es de anotar que, cruzando el Río Magdalena, tomando la carretera troncal del norte, el municipio se comunica con el puerto ubicado en el Municipio de Zambrano. A su vez, el corregimiento de San Agustín, ubicado en la ribera del Río Grande del Magdalena, es utilizado como medio de transporte desde allí hasta Tenerife y Plato (departamento de Magdalena) (CORMAGDALENA, 2009).

San Juan Nepomuceno tiene un origen nucleado en donde los edificios están agrupados alrededor de un núcleo central. Por su origen colonial adopta el modelo español, a menudo el núcleo es una plaza o una iglesia. Los patrones de asentamientos nucleados
están rodeados por 2 o 3 campos y cada uno está dividido en bandas que eran cultivadas por los agricultores individuales. El modelo original ha evolucionado a raíz de la construcción de la vía denominada Troncal del Caribe hacia un patrón de asentamiento lineal, en donde las edificaciones se han construido en forma paralela a la vía, respondiendo al concepto de que los asentamientos lineales tienden a desarrollarse por la conveniencia de la proximidad con una ruta de transporte.
3.2.3. Sistema económico de San Juan Nepomuceno.

La estructura productiva del municipio de San Juan Nepomuceno está compuesta fundamentalmente por los sectores agrícola y ganadero, en el área rural, los cuales son los que más aportan a la producción del municipio. El sector agropecuario equivale a un 70% y un 30% en el desarrollo de actividades como el comercio, servicio, agroindustria, artesanías, y empleos informales en el sector urbano. Lo anterior evidencia la importancia que tiene el sector agropecuario en el desarrollo social y económico del municipio. Cabe destacar la importancia de los productores agropecuarios en el municipio, al combinar la actividad agrícola con la actividad pecuaria, esto hace que sean más sostenibles en su calidad de vida y en este segmento de la economía. (SODEIMA, 2015).

Los principales cultivos son: el ñame, el maíz y la yuca. Otros cultivos que se producen, aunque en menor escala son: el ají dulce y los citricos (Alcaldía San Juan Nepomuceno, 2011). Las toneladas sembradas y cosechadas de ñame en el municipio se incrementaron paulatinamente entre 2007 y 2010, año en el que se llegó al máximo de 8.000 hectáreas sembradas y cosechadas. Posteriormente en 2011, se presentó una reducción de 30% aproximadamente en el área de siembra y cosecha, reducción que se acentuó en 2012. Caso similar al ñame ocurrió con el maíz tradicional cuyas áreas de siembra y cosecha se incrementaron de manera sostenida hasta 2011, año a partir del cual disminuyeron un 50% aproximadamente. Con respeto a la yuca, la tendencia de las áreas sembradas y cosechadas fue creciente hasta 2009. En 2010 y 2011 las áreas sembradas y cosechadas se mantuvieron en 3.000 hectáreas, reduciéndose a 1.500 en 2012, con rendimiento de 12 ton/Ha.

Es de anotar que, a nivel departamental, también se reporta una gran importancia de los cultivos preponderantes del municipio. El ñame sembrado en San Juan Nepomuceno representa en promedio el 25% del total de área sembrada del departamento; el arroz representa el 20,7%; y el maíz tradicional el 6,6% del total de siembra de este producto en Bolívar.

Respecto a la capacidad productiva y eficiencia en la actividad agrícola, de acuerdo con AGRONET, los cultivos de mejor rendimiento en el año 2012 fueron el ñame y la yuca con una capacidad de producción de 12 toneladas por hectárea. Por su parte, la mayor producción la reportaron a su vez, el ñame, la yuca y el maíz tradicional, con 34.800, 9.600 y 4.500 hectáreas respectivamente.

De acuerdo con información de AGRONET, sólo hasta el año 2012 se reportaron áreas sembradas de cacao en el municipio de San Juan Nepomuceno, en ese año el municipio alcanzó un área sembrada equivalente a 60 hectáreas, representando ello el 0,8% de las áreas sembradas del grano en el departamento en ese mismo período y el 6,2% de las áreas de siembra de cacao en los municipios de Montes de María.

En cuanto a las actividades pecuarias la principal actividad es la ganadería bovina que cuenta en el municipio según el censo SIT FEDEGAN a fecha 15 de enero del 2016 de 30.030 bovinos distribuidos en 664 predios de los 1.602 que tiene el municipio, destacándose la ganadería doble propósito que busca la producción de leche y de carne a través del destete de un ternero que se destina a la venta para la ceba en el municipio o en otros municipios y departamentos. En el municipio de San Juan Nepomuceno no existen lecherías especializadas, los productores manejan el doble propósito (leche y
Las razas que se manejan son: Cebuinas y los cruces como Pardo Suizo, Holstein, Gyl y Cimental.

El valor agregado municipal está representado por el 88% en actividades que no se puede especificar porque corresponden a la economía informal, la dificultad radica en la no contabilización de estas. Sumado a lo anterior, la industria es mínima solo representa el 4% del valor agregado económico municipal, el comercio contribuye al 7% y la intermediación financiera es solo el 1% actividad agrícola con la actividad pecuaria.

La estructura de concentración de la tierra del municipio de San Juan Nepomuceno se analiza empleando cifras del IGAC. En primera instancia, se observa la tendencia del índice GINI del municipio entre los años 2000 y 2012. El índice ha mostrado un comportamiento fluctuante en los últimos doce años. No es sorpresivo encontrarse con este resultado ya que, en este municipio, desde finales de los noventa, se viene presentando un acelerado proceso de concentración de la propiedad de la tierra en la zona rural, en gran parte resultado de la presencia de grupos ilegales (Escuela Latinoamericana de Cooperación y Desarrollo (ELACID), 2005).

Desde el año 1997 comenzó a presentarse en el municipio el fenómeno del desplazamiento forzado, generando destierro, usurpación o abandono forzado de tierras por parte de los campesinos propietarios, poseedores, tenedores y ocupantes. En este sentido, las condiciones de vulnerabilidad que se propiciaron fueron aprovechadas para la compra masiva de tierras de manera irregular, a precios irrisorios, en un contexto moldeado por la informalidad en la tenencia de la tierra.

Estos argumentos corroboran que la tenencia de tierras de los productores en el municipio es uno de los principales problemas que enfrenta este sector; pese a que la población ha sido beneficiaria de programas coordinados por el INCODER, sobre convocatorias para el acceso a la tierra; no obstante, se mantiene el déficit en el caso de los pequeños productores. El pequeño productor trabaja en tierras arrendadas, limitando su facilidad para acceder a créditos que contribuyan al mejoramiento de su actividad económica. Adicional al arrendamiento de la tierra, aparece otra figura de acceso a la misma, que consiste en prestar "informalmente la propiedad por un periodo de tiempo determinado. En una entrevista realizada a un integrante de la población víctima del municipio se soporta este argumento.

Las instituciones financieras que ofrecen servicios en el municipio son: Banco Agrario de Colombia S.A., Banco Davivienda S.A., Banco de Bogotá, Bancolombia S.A. y Banco Caja Social (BCSC S.A). Los productos que ofrecen están encaminados principalmente a microcréditos de fortalecimiento empresarial y de apoyo al emprendimiento.

Con base en información de Agronet y FINAGRO, el Banco Agrario otorgó 1.296 millones pesos en créditos agropecuarios a pequeños productores del municipio, distribuyéndose dichos créditos en 182 productores y/o asociaciones con un valor promedio del préstamo cercano a los 7 millones de pesos. A su vez, en lo corrido de 2014, el monto total de los créditos otorgados por este banco en el municipio es de 434 millones de pesos distribuidos en 65 beneficiarios.
4. EVALUACIÓN DE LA DEGRADACIÓN DE LAS TIERRAS EN EL ÁREA PILOTO A NIVEL LOCAL.

Para realizar la evaluación de la degradación de las tierras en el área piloto a nivel local en el marco del proyecto SD-MST en Colombia, se tuvo en cuenta los lineamientos metodológicos de LADA (Evaluación de la Degradación de Tierras en Zonas Áridas) y del WOCAT (Panorama mundial de enfoques y tecnologías de conservación), aplicable bajo la herramienta de mapeo (MapQuest) “Cuestionario para posibilitar la realización de Mapas de la Degradación de la Tierra y el Desarrollo de Mecanismos para el Manejo Sostenible de la Tierra”. (WOCAT, 2008)

El objetivo de esta herramienta es obtener una matriz con la distribución y las características de la degradación de la tierra y de las actividades de conservación por distrito, provincias, países, regiones, o en última instancia, del mundo entero (unidades administrativas). El producto final está constituido por mapas que contienen el estado, las causas e impactos de la degradación de la tierra y el estado e impacto de la conservación de los principales sistemas/clasificaciones del uso de las tierras (SUT) en un área determinada.

En el marco del proyecto SD-MST en Colombia, la evaluación de la degradación de las tierras a nivel local, está constituida por una base de datos cartográfica en donde la unidad administrativa definida es el límite municipal (San Juan Nepomuceno - Bolívar).

La metodología de mapeo (o cartográfica) se basa en la herramienta de cuestionarios de mapeo (MapQuest), original del WOCAT (WOCAT, 2007). Esta ha sido ampliada para prestar más atención a cuestiones como la degradación biológica e hídrica y hacer más hincapié en las causas directas y socioeconómicas de esos fenómenos, incluyendo los impactos sobre los servicios ecosistémicos. Se evalúa el tipo de degradación de la tierra que está ocurriendo actualmente, dónde y por qué ocurre y qué se hace al respecto en términos de Manejo Sostenible de Tierras (MST), bajo la estructura de un cuestionario.

El vínculo de la información obtenida mediante el cuestionario con el Sistema de Información Geográfica (SIG) permite la generación de mapas como así también de áreas de cálculo referidas a varios aspectos de la degradación y conservación de la tierra. La base de datos del mapa y los resultados del mapeo proveen una herramienta poderosa para la obtención de una visión general de la degradación y conservación de la tierra en un país, una región, o en el mundo entero. (CDE/WOCAT FAO/LADA ISRIC, 2008)

Para el ejercicio del mapeo (MapQuest), el Sistema/Clasificación del Uso de las Tierras (SUT) está considerado como la unidad básica de evaluación (Nachtergaele et al, 2007). Esas unidades básicas de los SUT contienen información muy valiosa (tanto biofísica como socio-económica) referida al uso de las tierras, siendo ésta una de las principales causas de la degradación de la misma.

La combinación de las unidades de los SUT con las unidades administrativas permite a los usuarios evaluar las tendencias y los cambios en el tiempo de la degradación de la tierra y las prácticas conservacionistas aplicadas. Cada SUT dentro de una unidad administrativa constituye una unidad cartográfica o unidad de mapeo única para la cual la información sobre la degradación y la conservación deberá estar provista en la tabla matriz.
La herramienta de mapeo está constituida por la construcción de 5 pasos apoyados en el diligenciamiento de 5 cuestionarios, los cuales permiten determinar las fuerzas motrices, el estado, la presión, el impacto y las respuestas a la degradación de las tierras. Cada cuestionario cuenta con la opción de indicar la unidad cartográfica o unidad de mapeo que se está evaluando:

- **Paso 1**: Contribución de los especialistas, diligenciamiento del cuestionario (Q1).
- **Paso 2**: Sistema/Clasificación del Uso de las Tierras (SUT), diligenciamiento del cuestionario (Q2).
- **Paso 3**: Degradación de la tierra por cada Sistema/Clasificación del Uso de las Tierras, diligenciamiento del cuestionario (Q3). Identificación de indicadores de estado, presión e impacto.
- **Paso 4**: Conservación de las Tierras, diligenciamiento del cuestionario (Q4). Identificación de indicadores de respuesta.
- **Paso 5**: Recomendaciones de expertos, diligenciamiento del cuestionario (Q5).

En el marco del proyecto SD-MST en Colombia en el área piloto a nivel local, se aplicó la totalidad de la herramienta de mapeo, soportada bajo los Sistemas de Información Geográfica (SIG). La figura 3 sintetiza la metodología de evaluación de la degradación de las tierras bajo la herramienta de mapeo (pasos del 1 al 5) en el área piloto.

Figura 3. Cuadro metodológico para la evaluación de la degradación de las tierras en el área piloto.

Herramienta de mapeo por cuestionarios (MapQuest).

Los siguientes capítulos describen la construcción de los 5 pasos de la herramienta de mapeo WOCAT/LADA, bajo el marco del proyecto SD-MST en Colombia en el área piloto a nivel local.
4.1. Contribución de especialistas (Q1).

La recolección de los datos, la armonización y la calidad garantizada fue realizada mediante la elaboración de un taller de expertos municipal (San Juan Nepomuceno - Bolívar) los días 11 y 12 de abril del año 2018 en la Universidad de Cartagena (Sede San Juan Nepomuceno), donde se involucró un grupo de especialistas los cuales cubren una gama de temas relacionados con la degradación, el manejo, el uso de la tierra y la conservación del suelo y el agua en el país; sumándole la identificación y conocimiento del área de trabajo.

El objeto del taller de expertos fue socializar y desarrollar la metodología de la evaluación de la degradación de las tierras, a partir de la herramienta de mapeo por cuestionarios (MapQuest), la cual se compone de 5 pasos identificados por cuestionarios:

- Cuestionario 1 (Q1): Diligenciamiento de datos personales y laborales de los especialistas participantes.
- Cuestionario 2 (Q2): Validación de los sistemas de uso de las tierras (SUT) en el área piloto (San Juan Nepomuceno - Bolívar).
- Cuestionario 3 (Q3): Identificación de los indicadores de estado, presión e impacto de la degradación de las tierras por cada SUT presente.
- Cuestionario 4 (Q4): Identificación de indicadores de respuesta determinando las prácticas de manejo de las tierras junto con su grupo de conservación al que corresponde, su extensión, efectividad, tiempo e impactos sobre los servicios ecosistémicos.
- Cuestionario 5 (Q5): Proporcionar unas recomendaciones de los expertos referida a las intervenciones sobre cómo abordar la degradación.

Los especialistas que participaron en el taller de expertos, se encuentran involucrados con organizaciones de tipo gubernamental, entidades estatales, corporaciones, universidades, parques nacionales naturales, agencias, sectores productivos, fundaciones y entidades privadas, entre otros. El anexo 1 describe los especialistas que participaron en el taller de expertos con base en el listado de asistencia.

La herramienta de mapeo (MapQuest), cuenta con un cuestionario denominado “Q1” (figura 4) que permite el diligenciamiento de los datos personales y laborales de los especialistas que participaron en la contribución de la evaluación de la degradación de las tierras en el área piloto. Posteriormente los especialistas apoyaron con el desarrollo de los pasos 2, 3, 4 y 5 (Q2, Q3, Q4 y Q5) los cuales se describen en los siguientes capítulos. Cada uno de estos cuestionarios después de diligenciados son sometidos a revisión y posible ajuste, con el objeto de dar consistencia a la información generada.

El anexo 2 recopila los cuestionarios (Q1) diligenciados por los especialistas participantes en el taller de expertos.
CUESTIONARIO (Q1)

Contribución de Especialistas

Si están involucrados varios especialistas, escriba todos los datos de las principales personas involucradas y de sus instituciones y agregue a continuación el nombre de otra persona(s) con su institución(s).

<table>
<thead>
<tr>
<th>Apellido:</th>
<th>Nombre(s):</th>
<th>Femenino _</th>
<th>Masculino _</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Institución actual y dirección:

<table>
<thead>
<tr>
<th>Nombre de la Institución:</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Dirección de la Institución:</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Ciudad:</th>
<th>Código Postal:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Estado o Distrito:</th>
<th>País:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tel:</th>
<th>Fax:</th>
<th>E-mail:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dirección Permanente:

<table>
<thead>
<tr>
<th>Ciudad:</th>
<th>Código Postal:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Estado o Distrito:</th>
<th>País:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Otras personas involucradas:</th>
<th>Institución:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| | |
| | |

Por favor, confirme que la institución, proyecto, etc., al que se hace referencia, no tiene objeciones en que WOCAT – LADA utilice y distribuya dicha información.

<table>
<thead>
<tr>
<th>Fecha:</th>
<th>Firma:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gracias!

Figura 4. Cuestionario (Q1). Paso 1, contribución de especialistas (MapQuest)
4.2. Clasificación de los sistemas del uso de las tierras – SUT (Q2).

Dentro de la metodología de evaluación, es necesario para cada sistema de uso de las tierras (SUT) estimar el incremento o la reducción del área en los últimos 10 años dentro de la unidad administrativa, es decir dentro de la unidad cartográfica o de mapeo (unidad administrativa + SUT), como también la estimación del aumento o descenso en la intensidad de cada sistema del uso de las tierras.¹³

Antes de estimar la tendencia del área y la tendencia en la intensidad del uso de las tierras, fue necesario definir y delimitar las mismas. Para esto se realizó una propuesta metodológica que encaja en el paso 2 de la herramienta de mapeo (MapQuest), con el objeto de definir y delimitar las unidades básicas de evaluación (SUT), la cual fue socializada y puesta en debate ante mesas técnicas (anexo 3, lista de asistentes y acta del taller), como ante los especialistas participantes en el taller de expertos municipal nombrado en el capítulo 4.1.

La herramienta de mapeo propone la delimitación de unidades básicas de evaluación de la siguiente manera (figura 5).

![Figura 5. Clasificación de los SUT. Paso 2 de la figura 3.](image)

Con el objeto de delimitar las unidades básicas de evaluación (SUT) en el municipio de San Juan Nepomuceno, es necesario contar como mínimo con información cartográfica respecto a la cobertura de la tierra, la zonificación climática y el relieve.

La variable geográfica como el relieve se pudo analizar e interpretar como una variable estática ya que tanto la pendiente como el tipo de relieve se mantienen durante el tiempo, por lo tanto las fuentes para identificar esta variable fueron el modelo digital de elevación de 30 metros el cual es funcional para el manejo cartográfico a escala 1:25.000, como el mapa de correlación de suelos el cual permite identificar el tipo de relieve (escala existente 1:100.000).

¹³ Un cuestionario para posibilitar la realización de Mapas de la Degradación de la Tierra y el Desarrollo de Mecanismos para el Manejo Sostenible de la Tierra - CDE/WOCAT, FAO/LADA, ISRIC, 2008. Pág, E2
La variable geográfica como la zonificación climática se pudo analizar e interpretar como una variable estática ya que tanto el piso térmico como la humedad se mantienen durante el tiempo, dejando como excepción las épocas que se presenten de fenómenos de niño y/o niña, por lo tanto la fuente para identificar esta variable fue el mapa de ecosistemas el cual permite identificar el clima (escala existente 1:100.000, pero ajustable en campo).

Mientras que la variable geográfica como la cobertura de la tierra no se debía trabajar a partir de la fuente de cobertura de la tierra 2010-2012 a escala 1:100.000, debido a que es una variable dinámica y ni la resolución temporal (2010-2012) como la resolución espacial (1cm representa 1.000 m en el terreno) son adecuadas para trabajar a nivel local (escala 1:25.000). Por lo tanto

Por lo tanto, las fuentes existentes permiten determinar y evaluar la zonificación climática como el relieve del municipio de San Juan Nepomuceno, pero se ve la necesidad de generar en éste proyecto una aproximación de la cobertura de la tierra lo más actual posible (resolución temporal) y lo más preciso que se pueda (resolución espacial). Bajo esta connotación se procedió a realizar el mapa de sistemas de uso de las tierras (escala 1:25.000).

Posteriormente, ya delimitados los SUT fue necesario realizar un trabajo en campo con el objeto de validar y ajustar las unidades de los SUT, las cuales se socializaron y validaron a partir del taller de expertos municipal.

4.2.1. Fuentes de información para la clasificación de los SUT.

El proceso para zonificar las unidades básicas de evaluación de los sistemas de uso de las tierras, comienza con el desarrollo de un mapa preliminar generado por la interpretación de imágenes satelitales y la superposición de capas de información biofísica, socioeconómica, agrícola y administrativa que permitió identificar cerca de 106 sistemas de uso de la tierra (SUT).

La idea básica del proceso fue considerar distintas capas de información en un Sistema de Información Geográfica (SIG), siendo las capas más importantes que componen el mapa preliminar, las siguientes:

- Mapa de ecosistemas (IDEAM).
- Mapa de correlación de suelos – Atributo tipo de relieve (IGAC).

Como capas de apoyo o de aporte de atributos que componen el mapa preliminar, las siguientes:

- Mapa de correlación de suelos – Atributo unidades cartográficas de suelo (IGAC).
- Áreas protegidas regionales (RUNAP).

Como capa administrativa que permite definir parte de la unidad cartográfica o de mapeo (veredas) y que identifica las áreas agrícolas dentro del área de trabajo a nivel local, las siguientes:
Para esto se realizó una búsqueda de información existente (información secundaria) en las bases de datos de la Unidad de Planificación Rural Agropecuaria (UPRA), en el geoservicio del Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM), en el geoportal del Instituto Geográfico Agustín Codazzi (IGAC), como en las bases de datos de la Sociedad Colombiana de Arquitectos (SCA) y en el explorador de la Tierra de U.S. Geological Survey; que cumplan con el cubrimiento del área piloto, como, con el nivel de detalle mínimo siendo la escala 1:25.000. En la tabla 1 se describen los insumos necesarios para el desarrollo del mapa preliminar de los sistemas de uso de las tierras.

<table>
<thead>
<tr>
<th>TEMA</th>
<th>INSUMO</th>
<th>FORMATO</th>
<th>ESCALA</th>
<th>SISTEMA</th>
<th>FUENTE</th>
<th>AÑO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suelo</td>
<td>Imágenes satelitales, Sentinel-2</td>
<td>Jp2</td>
<td>Resolución 10m</td>
<td>WGS-84</td>
<td>U.S. Geological Survey</td>
<td>2018</td>
</tr>
<tr>
<td>Ecología</td>
<td>Ecosistemas</td>
<td>shp</td>
<td>1:100.000</td>
<td>MAGNA</td>
<td>IDEAM</td>
<td>2016</td>
</tr>
<tr>
<td>Geomorfología</td>
<td>Correlación de suelos</td>
<td>shp</td>
<td>1:100.000</td>
<td>MAGNA</td>
<td>IGAC, ajustado por UPRA</td>
<td>2017</td>
</tr>
<tr>
<td>Base Cartográfica</td>
<td>Modelo digital terreno (30m)</td>
<td>img</td>
<td>30 metros</td>
<td>SIRGAS</td>
<td>IGAC</td>
<td></td>
</tr>
<tr>
<td>Base Cartográfica</td>
<td>BC 1:100.000</td>
<td>gdb</td>
<td>1:100.000</td>
<td>MAGNA</td>
<td>IGAC</td>
<td>2017</td>
</tr>
<tr>
<td>Conservación</td>
<td>Áreas protegidas regionales</td>
<td>shp</td>
<td>Desconocida</td>
<td>SIRGAS</td>
<td>RUNAP</td>
<td>2017</td>
</tr>
<tr>
<td>Agrícola</td>
<td>Frontera agrícola</td>
<td>shp</td>
<td>1:100.000</td>
<td>MAGNA</td>
<td>UPRA</td>
<td>2017</td>
</tr>
</tbody>
</table>

4.2.2. Generación del mapa preliminar de cobertura de la tierra (1:25.000).

Para el desarrollo del presente capítulo, se descargaron diferentes escenas de imágenes satelitales del sensor Sentinel-2, las cuales permitieron la interpretación de la cobertura de la tierra en el municipio de San Juan Nepomuceno con una temporalidad muy reciente y una resolución espacial más que aceptable para productos cartográficos a escala 1:25.000.

Las imágenes satelitales se descargaron de manera gratuita a través de la página https://earthexplorer.usgs.gov, autoría de la U.S. Geological Survey (Servicio Geológico de los Estados Unidos), quien es creado “por una ley del Congreso en 1879, el USGS ha evolucionado durante los siguientes 125 años (3 de marzo de 1879), uniendo su talento y conocimiento al progreso de la ciencia y la tecnología. El USGS es la única agencia de ciencia para el Departamento del Interior. Es buscado por miles de socios y clientes por su experiencia en ciencias naturales y sus vastas tenencias de datos biológicos y de la tierra.” (USGS, 2018)

Las imágenes Sentinel-2 son una misión de Earth Observation desarrollada por la Agencia Espacial Europea (ESA) como parte del Programa Copernicus para realizar observaciones terrestres en apoyo de servicios como el monitoreo forestal, la detección de cambios en la cobertura terrestre y el manejo de desastres naturales. Se compone de...
dos satélites idénticos construidos por Airbus DS, Sentinel-2A y Sentinel-2B, con dos satélites adicionales construidos por Thales Alenia Space.

Para lograr revisiones frecuentes y una alta disponibilidad de la misión, operan simultáneamente dos satélites Sentinel-2 idénticos (Sentinel-2A y Sentinel-2B). La órbita planificada es sincrónica al sol a 786 km de altitud, 14,3 revoluciones por día, ofreciendo imágenes de todo el planeta cada cinco días; con un nodo descendente a las 10:30 a.m. Esta hora local se seleccionó como un compromiso entre minimizar la cobertura de nubes y garantizar la iluminación adecuada del sol. Está cerca de la hora local Landsat y coincide con SPOT, lo que permite la combinación de datos Sentinel-2 con imágenes históricas para construir series temporales a largo plazo.

Los dos satélites funcionan en lados opuestos de la órbita. El lanzamiento del primer satélite, Sentinel-2A, se produjo el 23 de junio de 2015 a las 01:52 UTC en un vehículo de lanzamiento de Vega. Sentinel-2B se lanzó el 7 de marzo de 2017 a las 01:49 UTC, también a bordo de un cohete Vega.14

Los satélites Sentinel-2 llevan cada uno un único instrumento multispectral (MSI) con 13 canales espectrales en el infrarrojo visible / infrarrojo cercano (VNIR) y el rango espectral infrarrojo de onda corta (SWIR)15. La tabla 2 describe para cada banda o canal espectral la longitud de onda, la resolución espacial y el ancho de banda.

<table>
<thead>
<tr>
<th>Bandas Sentinel-2</th>
<th>Longitud de onda central (μm)</th>
<th>Resolución (m)</th>
<th>Ancho de banda (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banda 1 - aerosol costero</td>
<td>0.443</td>
<td>60</td>
<td>27/45 (2A / 2B)</td>
</tr>
<tr>
<td>Banda 2 - Azul</td>
<td>0.490</td>
<td>10</td>
<td>98</td>
</tr>
<tr>
<td>Banda 3 - Verde</td>
<td>0.560</td>
<td>10</td>
<td>45/46 (2A / 2B)</td>
</tr>
<tr>
<td>Banda 4 - Rojo</td>
<td>0.665</td>
<td>10</td>
<td>38/39 (2A / 2B)</td>
</tr>
<tr>
<td>Band 5 - Vegetación Red Edge</td>
<td>0.705</td>
<td>20</td>
<td>19/20 (2A / 2B)</td>
</tr>
<tr>
<td>Banda 6 - Vegetación Red Edge</td>
<td>0.740</td>
<td>20</td>
<td>18</td>
</tr>
<tr>
<td>Banda 7 - Vegetación Red Edge</td>
<td>0.783</td>
<td>20</td>
<td>28</td>
</tr>
<tr>
<td>Banda 8 - NIR</td>
<td>0.842</td>
<td>10</td>
<td>115</td>
</tr>
<tr>
<td>Banda 8A - Estrecho NIR</td>
<td>0.865</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Banda 9 - Vapor de agua</td>
<td>0.945</td>
<td>60</td>
<td>20</td>
</tr>
<tr>
<td>Banda 10 - SWIR - Cirrus</td>
<td>1.375</td>
<td>60</td>
<td>20</td>
</tr>
<tr>
<td>Banda 11 - SWIR</td>
<td>1.610</td>
<td>20</td>
<td>90</td>
</tr>
<tr>
<td>Banda 12 - SWIR</td>
<td>2.190</td>
<td>20</td>
<td>180</td>
</tr>
</tbody>
</table>

Con base en el descargue de las imágenes satelitales y por medio de geoprocesamientos, se elaboró el mapa preliminar de cobertura de la tierra de San Juan Nepomuceno a escala 1:25.000, bajo el software ArcGIS 10.4. Dichos geoprocesamientos se describen a continuación por pasos cartográficos.

14 Sentinel-2. http://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Sentinel-2/About_the_launch
15 Sentinel-2. http://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Sentinel-2/Instrument
4.2.2.1. Paso cartográfico 1 (Adquisición de imágenes Sentinel-2).

Teniendo en cuenta que la misión Sentinel-2 tiene las capacidades de obtener datos multispectrales con 13 bandas en el infrarrojo visible, infrarrojo cercano y onda corta del espectro; captura cada 5 días; resolución espacial de 10 m, 20 m y 60 m; y una política de datos abierta y gratuita, se procedió a identificar las escenas tomadas de mayor actualidad en el área de San Juan Nepomuceno (Bolívar) y con el menor porcentaje de presencia de nubes.

Para esto se ingresó a la página https://earthexplorer.usgs.gov, se determinó el área geográfica de búsqueda, se determinó el tipo de dato a buscar (sentinel-2) arrojando 100 registros de escenas como resultado. Posteriormente se realizó el análisis de las escenas más recientes con base a la resolución radiométrica y su nubosidad, obteniendo 4 escenas Sentinel-2 de la época del 27 de enero del año 2018. Ver figura 6.

- L1C_T18PVR_A004670_20180127T153612
- L1C_T18PVS_A004670_20180127T153612
- L1C_T18PWR_A004670_20180127T153612
- L1C_T18PWS_A004670_20180127T153612

Identificadas las escenas Sentinel-2, se procedió al descargue de las mismas por medio de la página web arrojando cuatro carpetas comprimidas correspondientes a las cuatro escenas.

4.2.2.2. Paso cartográfico 2 (Combinación de bandas).

Teniendo en cuenta que cada escena contiene 13 bandas independientes (archivos separados), se ve la necesidad de combinar aquellas que permitan la interpretación de la cobertura de la tierra. Para esto se realizó un proceso que combinó las bandas 2, 3, 4 y 8.
(tabla 3) generando un único archivo (tipo raster) para cada escena descargada, bajo la herramienta “Composite Bands”. De esta manera se aseguró una resoluciónspectral (4 bandas para la interpretación), como una resolución espacial (10m) sin dejar a un lado la resolución temporal (27 de enero del 2018).

<table>
<thead>
<tr>
<th>Bandas Sentinel-2</th>
<th>Longitud de onda central (μm)</th>
<th>Resolución (m)</th>
<th>Ancho de banda (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banda 2 - Azul</td>
<td>0.490</td>
<td>10</td>
<td>98</td>
</tr>
<tr>
<td>Banda 3 - Verde</td>
<td>0.560</td>
<td>10</td>
<td>45/46 (2A / 2B)</td>
</tr>
<tr>
<td>Banda 4 - Rojo</td>
<td>0.665</td>
<td>10</td>
<td>38/39 (2A / 2B)</td>
</tr>
<tr>
<td>Banda 8 - NIR</td>
<td>0.842</td>
<td>10</td>
<td>115</td>
</tr>
</tbody>
</table>

4.2.2.3. Paso cartográfico 3 (Extracción para el área piloto).

Combinadas las bandas para cada escena Sentinel-2, se procedió a realizar una extracción de celdas de cada raster combinado que correspondiera con el área definida para la zona piloto más una influencia de 8 km aproximadamente a la redonda, utilizando la herramienta “Extract By Mask”. Ver figura 7

Cabe anotar que en el manejo de imágenes satelitales siempre se ha hablado de un preprocesamiento de las mismas, en donde a parte de la selección y adquisición de las mismas, se realizan correcciones atmosféricas adicional a una calibración radiométrica más una corrección geométrica.

- **Calibración radiométrica y corrección atmosférica**: El proceso de corrección atmosférica puede aplicar opcionalmente la corrección de neblina y/o el enmascaramiento de nubes, por lo cual es necesario inspeccionar previamente la imagen para detectar la presencia de nubes y/o neblina evidente. Como resultado
final de este subproceso, se obtiene una imagen en valores de reflectancia que mejora la separabilidad espectral de los objetos presentes en la imagen corregida (coberturas de la Tierra) respecto a la imagen original, mejorando los resultados finales del proceso de clasificación digital. En general con estas correcciones se busca minimizar los errores que influyen en la radiación o en el valor radiométrico de cada elemento captado en la escena.

- **Corrección geométrica**: Este proceso corrige los desplazamientos y distorsiones geométricas presentes en una imagen, causados por la inclinación del sensor (posición del sensor en el momento de la toma), la influencia del relieve y los errores sistemáticos asociados con la imagen. Para este propósito se recomienda seguir la metodología consignada en el documento “Manual de procedimientos para la producción de orto-imágenes de satélite ópticas usando MDT” (IGAC, 2008), que contiene la descripción detallada de la metodología y los recursos necesarios para realizar este proceso.

Para el caso de las escenas adquiridas bajo Sentinel-2, se expresa que éstas ya cuentan con este pre-procesamiento evidenciado en archivos con extensión *.xml (figura 8) y a su vez se hace una verificación de precisión con base a la capa digital predial rural del municipio de San Juan Nepomuceno (figura 9).

![Figura 8. Archivos *.xml de pre-procesamientos a imágenes Sentinel-2.](image)

![Figura 9. Verificación de precisión de la imagen Sentinel-2.](image)

4.2.2.4. **Paso cartográfico 4 (Generación de mosaico).**

Con las imágenes (raster) extraídas se procedió a realizar una fusión de los cuatro raster en un raster nuevo bajo la herramienta “Mosaic To New Raster”, dejando como resultado un mosaico del área piloto (figura 10).
Obtenido el mosaico (raster) del área piloto, se procedió a realizar una primera clasificación de la cobertura de la tierra (preliminar) bajo herramientas automáticas con el objeto de identificar las unidades principales (primer nivel) de coberturas de la tierra, según la metodología CORINE (Coordination of Information on the Environmental) Land Cover adaptada para el país. “Esta metodología tiene como propósito la realización del inventario homogéneo de la cubierta biofísica (cobertura) de la superficie de la tierra a partir de la interpretación visual de imágenes de satélite asistida por computador y la generación de una base de datos geográfica.” (IDEAM, 2010)

Para elaborar la clasificación de la cobertura de la tierra se determinó el número de clases en las que se deben agrupar las celdas, es decir el número de clases de coberturas de primer nivel que se alcanzan a diferenciar en la imagen satelital (mosaico). Esto a partir de un algoritmo de agrupamiento de isodatos que determina las características de las agrupaciones naturales de las celdas en el espacio de atributos multidimensionales y almacena los resultados en un archivo de firmas ASCII de salida. Para éste caso se determinaron 7 clases utilizando la herramienta “Iso Cluster”.

Con el archivo de firmas espectrales (ASCII) obtenido en el anterior paso, se procedió a realizar una clasificación de máxima similitud bajo la herramienta “Maximum Likelihood...
Evaluación de la degradación de las tierras a nivel local – San Juan Nepomuceno (Bolívar)

Classification”. La cual permite realizar una clasificación de máxima similitud en un conjunto de bandas de raster y crea un raster clasificado como salida, para esto es necesario haber realizado la interpretación visual de la imagen para definir cuantas clases se podrían diferenciar en la misma (archivo Iso Cluster).

4.2.2.7. Paso cartográfico 7 (Calificación de la cobertura de la tierra).

Generada la imagen de clases de coberturas (7 clases) se procedió a revisar, analizar y calificar clase por clase determinando el tipo de cobertura de la tierra, con base en la leyenda nacional de coberturas de la tierra (CLC). En la tabla 4 se describen las clases de cobertura de la tierra calificadas, mientras que la figura 11 representa la imagen clasificada a partir del mosaico de imágenes Sentinel-2.

Tabla 4. Descripción de las clases de cobertura de la tierra calificadas.

<table>
<thead>
<tr>
<th>CLASES</th>
<th>CALIFICACIÓN (COBERTURA DE LA TIERRA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Superficies de Agua y Sombras</td>
</tr>
<tr>
<td>2</td>
<td>Bosque y áreas seminaturales (Bosques)</td>
</tr>
<tr>
<td>3</td>
<td>Bosque y áreas seminaturales (Vegetación secundaria o en transición)</td>
</tr>
<tr>
<td>4</td>
<td>Territorios agrícolas</td>
</tr>
<tr>
<td>5</td>
<td>Territorios agrícolas</td>
</tr>
<tr>
<td>6</td>
<td>Bosque y áreas seminaturales (Plantación forestal)</td>
</tr>
<tr>
<td>7</td>
<td>Nubes y Territorios artificializados</td>
</tr>
</tbody>
</table>

Figura 11. Clasificación preliminar de la cobertura terrestre, máxima similitud.

4.2.2.8. Paso cartográfico 8 (Conversión de raster a vector).

Definida la calificación de cada clase de la imagen, se procedió a convertir el raster a polígono utilizando la herramienta “Raster To Polygon” simplificando las entidades resultantes (suaviza los ángulos rectos, recordando que el raster son celdas o píxeles cuadrados).

Con la clasificación de la cobertura de la tierra en formato vectorial (polígonos), se procedió a realizar un corte del área piloto a nivel local (Municipio de San Juan Nepomuceno) adicionando una zona de influencia alrededor del límite municipal de 1,5 km. Para esto fue necesario utilizar primero la herramienta “Buffer” sobre la capa del límite municipal de San Juan Nepomuceno, la cual crea polígonos de zona de influencia alrededor de entidades de entrada a una distancia especificada. Segundo, se utilizó la
herramienta “Clip” la cual extrae entidades de entrada que se superponen a las entidades del corte, que para éste caso es la entidad del límite municipal con la zona de influencia.

Dicho resultado se sometió a un proceso de agregar las entidades basadas en las clases definidas (7 clases) utilizando la herramienta “Dissolve”, especificando que no se permiten entidades multipartite. Resultando de ésta manera una capa vectorial (polígono) con 499.799 registros. La figura 12 representa el resultado de la conversión de raster a vector (polígono) en la zona de influencia.

Figura 12. Vector preliminar de la cobertura terrestre.

4.2.2.9. Paso cartográfico 9 (Depuración por área mínima).

A la capa vectorial (polígono) resultante del anterior paso, se le realizó una depuración cartográfica por área mínima de 2 hectáreas, teniendo en cuenta que la escala de trabajo es 1:25.000 lo cual representa 0,25 cm². Para esto se utilizó de manera repetitiva y gradualmente la herramienta “Eliminate”, la cual elimina los polígonos menores a 2 Ha al fusionarlos con los polígonos adyacentes que tienen el área más grande o el borde compartido más largo.

4.2.2.10. Paso cartográfico 10 (Suavizado y simplificado de polígonos).

Finalizado el proceso de depuración de área mínima de 2 Ha, se procedió a realizar el suavizado de los polígonos al tener en cuenta que el formato raster está compuesto por celdas o pixeles (para éste caso cuadrados que representan 10m x 10m en el terreno). Utilizando la herramienta “Smooth Polygon”, se alisaron ángulos agudos en los contornos.
de los polígonos para mejorar la calidad estética o cartográfica y a su vez se corrigieron errores topológicos que se pueden generar debido al proceso realizado.

El proceso de suavizado de polígonos trae consigo la generación de bastantes vértices, lo que hace que la capa se vuelva muy lenta en su visualización y edición, por lo tanto se utilizó la herramienta “Simplify Polygon”, la cual simplifica polígonos mediante la eliminación de curvas extrañas conservando la forma esencial y reduciendo la cantidad de vértices.

4.2.2.11. Paso cartográfico 11 (Interpretación de la cobertura de la tierra).

Con la capa preliminar de cobertura de la tierra, se procedió a interpretar, validar y ajustar visualmente (foto-interpretación) las clases de cobertura existentes, con base en la imagen sentinel-2. Complementariamente se interpretaron los polígonos resultantes con clases calificadas como nubes y sombras, esto con base en imágenes satelitales dispuestas por el software de ArcGIS (Esri, DigitalGlobe, GeoEye, i-cubed, Earthstar Geographics, entre otras), teniendo en cuenta que estas clases no superan el 10% respecto al área de trabajo. Las siguientes figuras representan algunos de los patrones identificados en la interpretación de la cobertura de la tierra en San Juan Nepomuceno.
4.2.2.12. Paso cartográfico 12 (Transformación del sistema de referencia).

Con la capa preliminar de la cobertura de la tierra interpretada, se procedió a proyectar la capa del sistema WGS-84 a MAGNA Colombia Bogota, recordando que en la práctica ambos sistemas son lo mismo ya que parten del centro de la tierra (sistemas geocéntricos).

4.2.2.13. Paso cartográfico 13 (Ajuste de la cobertura terrestre al área piloto).

Proyectada la capa a MAGNA Colombia Bogota (origen Gaussiano correspondiente para San Juan Nepomuceno), se procedió a realizar el corte de dicha capa correspondiente al área piloto a nivel local (Municipio de San Juan Nepomuceno, fuente Base Cartográfica IGAC 2017) utilizando la herramienta “Clip” la cual extrae entidades de entrada que se superponen a las entidades del corte.

Dicho resultado se sometió a un proceso de agregar las entidades basadas en atributos especificados utilizando la herramienta “Dissolve”, especificando que no se permiten entidades multipartes. A esta capa resultante, se le realizó una depuración cartográfica por área mínima de 2 hectáreas, teniendo en cuenta que la escala de trabajo es 1:25.000 lo cual representa 0,25 cm². Para esto se utilizó gradualmente la herramienta “Eliminate”. El mapa 12 representa el resultado de la interpretación de la cobertura de la tierra en el área piloto (San Juan Nepomuceno).
Evaluación de la degradación de las tierras a nivel local – San Juan Nepomuceno (Bolívar)

Mapa 12. Mapa preliminar de la cobertura de la tierra.
La tabla 5 describe las clases de coberturas preliminares identificadas (metodología CLC) en la imagen satelital Sentinel-2 del 27 de enero de 2018, con sus correspondientes porcentajes.

<table>
<thead>
<tr>
<th>Clases de coberturas terrestres preliminares del área piloto.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. TERRITORIOS ARTIFICIALIZADOS</td>
</tr>
<tr>
<td>1.1. Zonas urbanizadas</td>
</tr>
<tr>
<td>1.1.1. Tejido urbano continuo</td>
</tr>
<tr>
<td>1.2. Zonas industriales o comerciales y redes de comunicación</td>
</tr>
<tr>
<td>1.2.2. Red vial, ferroviaria y terrenos asociados</td>
</tr>
<tr>
<td>2. TERRITORIOS AGRÍCOLAS</td>
</tr>
<tr>
<td>2.1. Cultivos transitorios</td>
</tr>
<tr>
<td>2.1.1. Otros cultivos transitorios</td>
</tr>
<tr>
<td>2.1.2. Cereales</td>
</tr>
<tr>
<td>2.2. Cultivos permanentes</td>
</tr>
<tr>
<td>2.2.3.2. Palma de aceite</td>
</tr>
<tr>
<td>2.3. Pastos</td>
</tr>
<tr>
<td>2.3.1. Pastos limpios</td>
</tr>
<tr>
<td>2.3.2. Pastos arbolados</td>
</tr>
<tr>
<td>2.3.3. Pastos enmalezados</td>
</tr>
<tr>
<td>2.4. Áreas agrícolas heterogéneas</td>
</tr>
<tr>
<td>2.4.3. Mosaico de cultivos, pastos y espacios naturales</td>
</tr>
<tr>
<td>2.4.4. Mosaico de pastos con espacios naturales</td>
</tr>
<tr>
<td>3. BOSQUES Y ÁREAS SEMINATURALES</td>
</tr>
<tr>
<td>3.1. Bosques</td>
</tr>
<tr>
<td>3.1.1. Bosque denso</td>
</tr>
<tr>
<td>3.1.2. Bosque abierto</td>
</tr>
<tr>
<td>3.1.3. Bosque fragmentado</td>
</tr>
<tr>
<td>3.1.4. Bosque de galería y ripario</td>
</tr>
<tr>
<td>3.1.5. Plantación forestal</td>
</tr>
<tr>
<td>3.2. Áreas con vegetación herbácea y/o arb</td>
</tr>
<tr>
<td>3.2.2.1. Arbustal denso</td>
</tr>
<tr>
<td>3.2.3. Vegetación secundaria o en transición</td>
</tr>
<tr>
<td>4. ÁREAS HÚMEDAS</td>
</tr>
<tr>
<td>5. SUPERFICIES DE AGUA</td>
</tr>
<tr>
<td>5.1. Aguas continentales</td>
</tr>
<tr>
<td>5.1.1. Ríos (50 m)</td>
</tr>
<tr>
<td>5.1.2. Lagunas, lagos y ciénagas naturales</td>
</tr>
<tr>
<td>5.1.3. Canales</td>
</tr>
<tr>
<td>5.1.4. Cueros de agua artificiales</td>
</tr>
<tr>
<td>5.1.4.3. Estanques para acuicultura continental</td>
</tr>
<tr>
<td>Total general</td>
</tr>
<tr>
<td>4.2.3. Generación del mapa preliminarar de los SUT.</td>
</tr>
</tbody>
</table>

En una base de datos geográfica (Base de recursos) se almacenaron las capas espaciales de información secundaria (tabla 2) más la capa generada cobertura preliminar de la tierra, con el objeto de realizar los geoprocesamientos necesarios para generar las unidades preliminares de los sistemas de uso de las tierras (SUT).

Dichos geoprocesamientos se basan en la propuesta metodológica para la generación preliminar de los SUT. Para esto, la figura 14 describe el esquema conceptual que desglosa la clasificación de los SUT (figura 5) dentro del cuadro metodológico para la evaluación de la degradación de las tierras.
El desarrollo de los geoprocimientos se realizó bajo el software ArcGIS 10.4. Dichos geoprocimientos se describen a continuación por pasos cartográficos:

4.2.3.1. Paso cartográfico 1 (Delimitación del área piloto).

Se definió la capa principal del límite de trabajo (área piloto a nivel local), a partir de la capa "Limite_R" de la base cartográfica 2017, IGAC. Para esto se seleccionó el polígono que representa el municipio de San Juan Nepomuceno con un área de 63.455,9 hectáreas, posteriormente se exportó a una nueva capa espacial utilizando la herramienta "Export Data". A dicha capa se le calculó el área en unidades de hectáreas, con el objeto de trabajar el resto de capas espaciales bajo el mismo límite y área (mapa 13).
Mapa 13. Mapa del límite cartográfico para el área piloto a nivel local.
4.2.3.2. Paso cartográfico 2 (Coberturas a clases de uso).

Con base en el esquema conceptual para generar los SUT en el área piloto (figura 14), se realizó la homologación de las categorías de cobertura preliminar de la tierra a categorías de clase y tipo de uso de la tierra (tabla 6), teniendo en cuenta la “Leyenda De Usos Agropecuarios Del Suelo a Escalas Mayores a la Escala 1:25.000”

Tabla 6. Matriz de homologación de cobertura de las tierras a clase y tipo de uso de las tierras.

<table>
<thead>
<tr>
<th>COD. COBERTURA</th>
<th>COBERTURA</th>
<th>CLASE DE USO</th>
<th>TIPO DE USO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.1</td>
<td>Tejido urbano continuo</td>
<td>Asentamiento urbano</td>
<td>Asentamiento urbano</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Red vial, ferroviaria y terrenos asociados</td>
<td>Infraestructura vial</td>
<td>Infraestructura vial</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Otros cultivos transitorios</td>
<td>Cultivos transitorios</td>
<td>Cultivos transitorios</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Cereales</td>
<td>Cultivos transitorios</td>
<td>Cultivos de cereales</td>
</tr>
<tr>
<td>2.2.3.2</td>
<td>Palma de aceite</td>
<td>Cultivos permanentes arbóreos</td>
<td>Palma de aceite</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Pastos limpios</td>
<td>Ganadería</td>
<td>Ganadería en pastos limpios</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Pastos arbolados</td>
<td>Silvopastoril</td>
<td>Silvopastoril con pastos arbolados</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Pastos enmalezados</td>
<td>Ganadería</td>
<td>Ganadería en pastos enmalezados</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Mosaico de cultivos, pastos y espacios naturales</td>
<td>Agroforestal</td>
<td>Agroforestal con cultivos, pastos y espacios naturales</td>
</tr>
<tr>
<td>2.4.4</td>
<td>Mosaico de pastos con espacios naturales</td>
<td>Silvopastoril</td>
<td>Silvopastoril con pastos y espacios naturales</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Bosque denso</td>
<td>Natural</td>
<td>Bosque denso</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Bosque abierto</td>
<td>Natural</td>
<td>Bosque abierto</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Bosque fragmentado</td>
<td>Natural</td>
<td>Bosque fragmentado</td>
</tr>
<tr>
<td>3.1.4</td>
<td>Bosque de galería y ripario</td>
<td>Natural</td>
<td>Bosque de galería y ripario</td>
</tr>
<tr>
<td>3.1.5</td>
<td>Plantación forestal</td>
<td>Plantación forestal</td>
<td>Forestal plantado</td>
</tr>
<tr>
<td>3.2.2.2</td>
<td>Arbustal denso</td>
<td>Natural</td>
<td>Arbustiva natural</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Vegetación secundaria o en transición</td>
<td>Natural</td>
<td>Vegetación secundaria o en transición</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Zonas Pantanosas</td>
<td>Zonas acuáticas</td>
<td>Zonas pantanosas</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Ríos (50 m)</td>
<td>Zonas acuáticas</td>
<td>Ríos</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Lagunas, lagos y ciénagas naturales</td>
<td>Zonas acuáticas</td>
<td>Lagunas y ciénagas</td>
</tr>
<tr>
<td>5.1.3</td>
<td>Canales</td>
<td>Infraestructura</td>
<td>Infraestructura hídrica</td>
</tr>
<tr>
<td>5.1.4</td>
<td>Cuerpos de agua artificiales</td>
<td>Infraestructura</td>
<td>Cuerpos de agua artificiales</td>
</tr>
<tr>
<td>5.1.4.3</td>
<td>Estanques para acuicultura continental</td>
<td>Infraestructura</td>
<td>Infraestructura para acuicultura continental</td>
</tr>
</tbody>
</table>

Con la matriz de homologación (tabla 6), se generaron dos nuevos atributos (clase de uso y tipo de uso) en la capa espacial cobertura de las tierras, con el objeto de calcular el dato de clase y tipo de uso de las tierras a partir de una unión entre la matriz de homologación y la capa espacial. Para esto se utilizó la herramienta “Join” y la herramienta “Field Calculator”.

Posteriormente se creó una nueva capa espacial (Tipo de uso preliminar) mediante la fusión de polígonos adyacentes con el mismo valor de clase y tipo de uso de las tierras, utilizando la herramienta “Dissolve”. A esta capa resultante, se le realizó una depuración cartográfica por área mínima de 2 hectáreas, teniendo en cuenta que la escala de trabajo es 1:25.000 lo cual representa 0,5 cm². Para esto se utilizó gradualmente la herramienta “Eliminate”. El mapa 14 representa el resultado de la homologación de las categorías de cobertura de las tierras a categorías de tipo de uso preliminar.

16 Leyenda De Usos Agropecuarios Del Suelo a Escalas Mayores a la Escala 1:25.000. IGAC, UPRA. 2015.
Mapa 14. Mapa preliminar de los tipos de uso de las tierras.
4.2.3.3. Paso cartográfico 3 (Calificación de zonas climáticas).

Con base en el esquema conceptual para generar los SUT (figura 14), se realizó la calificación de zonas climáticas a partir de las variables de piso térmico y humedad relativa, (fuente de información, Ecosistemas 2016).

Con las zonas climáticas a partir del mapa de ecosistemas escala 1:100.000, se procedió a realizar un ajuste en el límite entre la zona semiárida y semihúmeda, con base en el DEM de 30 m, imágenes de google earth e interpretación en campo, teniendo en cuenta que la zona solo cuenta con una estación meteorológica (cod. 29030570, nombre La Haya). La figura 15 representa el ajuste de la humedad en el municipio de San Juan Nepomuceno.

Posteriormente se creó una nueva capa espacial (Zonas climáticas) mediante la fusión de polígonos adyacentes con el mismo valor de la zona climática, utilizando la herramienta “Dissolve. A esta capa resultante, se le realizó una depuración cartográfica por área mínima de 2 hectáreas, teniendo en cuenta que la escala de trabajo es 1:25.000 lo cual representa 0,5 cm². Para esto se utilizó gradualmente la herramienta “Eliminate”. El mapa 15 representa el resultado de la calificación de las zonas climáticas.
Mapa 15. Mapa de zonas climáticas.
Con base en el esquema conceptual para generar los SUT (figura 14), se realizó la calificación del tipo de pendiente a partir de las categorías de porcentaje de la pendiente y tipo de relieve (fuente de información, DEM 30m y Correlación de suelos respectivamente). La tabla 7 describe la matriz de calificación.

<table>
<thead>
<tr>
<th>PENDIENTE (%)</th>
<th>TIPO DE RELIEVE</th>
<th>TIPO DE PENDIENTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Cuerpos de agua</td>
<td>Plano</td>
</tr>
<tr>
<td>a</td>
<td>Espinazos y crestones</td>
<td>Plano</td>
</tr>
<tr>
<td>a</td>
<td>Glacís de acumulación</td>
<td>Plano</td>
</tr>
<tr>
<td>a</td>
<td>Lomas</td>
<td>Plano</td>
</tr>
<tr>
<td>a</td>
<td>Lomas y crestones</td>
<td>Plano</td>
</tr>
<tr>
<td>a</td>
<td>Plano de inundación</td>
<td>Plano</td>
</tr>
<tr>
<td>a</td>
<td>Vallecitos</td>
<td>Plano</td>
</tr>
<tr>
<td>a</td>
<td>Zonas urbanas</td>
<td>Plano</td>
</tr>
<tr>
<td>b</td>
<td>Cuerpos de agua</td>
<td>Ligeramente inclinado</td>
</tr>
<tr>
<td>b</td>
<td>Espinazos y crestones</td>
<td>Ligeramente inclinado</td>
</tr>
<tr>
<td>b</td>
<td>Glacís de acumulación</td>
<td>Ligeramente inclinado</td>
</tr>
<tr>
<td>b</td>
<td>Lomas</td>
<td>Ligeramente inclinado</td>
</tr>
<tr>
<td>b</td>
<td>Lomas y crestones</td>
<td>Ligeramente inclinado</td>
</tr>
<tr>
<td>b</td>
<td>Vallecitos</td>
<td>Ligeramente inclinado</td>
</tr>
<tr>
<td>b</td>
<td>Zonas urbanas</td>
<td>Ligeramente inclinado</td>
</tr>
<tr>
<td>d</td>
<td>Espinazos y crestones</td>
<td>Moderadamente quebrado</td>
</tr>
<tr>
<td>d</td>
<td>Glacís de acumulación</td>
<td>Moderadamente quebrado</td>
</tr>
<tr>
<td>d</td>
<td>Lomas</td>
<td>Moderadamente quebrado</td>
</tr>
<tr>
<td>d</td>
<td>Lomas y crestones</td>
<td>Moderadamente quebrado</td>
</tr>
<tr>
<td>d</td>
<td>Vallecitos</td>
<td>Moderadamente quebrado</td>
</tr>
<tr>
<td>d</td>
<td>Zonas urbanas</td>
<td>Moderadamente quebrado</td>
</tr>
<tr>
<td>e</td>
<td>Espinazos y crestones</td>
<td>Fuertemente quebrado</td>
</tr>
<tr>
<td>e</td>
<td>Lomas</td>
<td>Fuertemente quebrado</td>
</tr>
<tr>
<td>e</td>
<td>Lomas y crestones</td>
<td>Fuertemente quebrado</td>
</tr>
<tr>
<td>e</td>
<td>Vallecitos</td>
<td>Fuertemente quebrado</td>
</tr>
<tr>
<td>e</td>
<td>Zonas urbanas</td>
<td>Fuertemente quebrado</td>
</tr>
</tbody>
</table>

Para generar el porcentaje de pendiente a partir del DEM de 30 metros (formato raster), fue necesario utilizar la herramienta “Slope”, la cual genera un raster de pendiente de salida que se puede calcular en unidades de grados o en unidades de porcentaje (elevación en porcentaje). La elevación en porcentaje puede comprenderse mejor si se la considera como la elevación dividido por el avance, multiplicado por 100. Cuando el ángulo es de 45 grados, la elevación es igual al avance, y la elevación en porcentaje es 100%. (Esri, 2016)
Para éste caso se trabajó en unidades de porcentaje la pendiente, clasificándola de la siguiente manera:

a: 0 – 3%; b: 3 – 7%; c: 7 – 12%; d: 12 – 25%; e: 25 – 50%; f: 50 – 75%; y g: > 75%.

Con el raster de porcentaje de pendientes, se procedió a realizar una conversión a entidades de polígono (de formato raster a formato vectorial) bajo la herramienta “Raster to Polygon” dejando como parámetro la clasificación de los porcentajes (a, b, c, d, e, f, g) el cual se convierte como atributo en la capa espacial de salida (formato vectorial).

Con la capa espacial de porcentaje de la pendiente, se procedió a generar la capa espacial tipo de relieve, a partir de la capa de correlación de suelos la cual contiene como atributo el tipo de relieve. Para esto se realizó una fusión de polígonos adyacentes con el mismo valor del tipo de relieve, utilizando la herramienta “Dissolve”.

Con las dos capas espaciales listas (porcentaje de la pendiente y tipo de relieve) se procedió a realizar una unión geométrica entre las mismas, en donde las geometrías y sus atributos se escriben en una capa espacial de salida. Para esto se utilizó la herramienta “Union”.

Con la matriz de calificación (tabla 7), se generó un nuevo atributo (tipo de pendiente) en la capa espacial resultante de la unión, con el objeto de calcular el dato del tipo de pendiente a partir de una unión entre la matriz de calificación y la capa espacial. Para esto se utilizó la herramienta “Join” y la herramienta “Field Calculator”.

Posteriormente se creó una nueva capa espacial (Tipos de pendientes) mediante la fusión de polígonos adyacentes con el mismo valor del tipo de pendiente, utilizando la herramienta “Dissolve”. A esta capa resultante, se le realizó una depuración cartográfica por área mínima de 2 hectáreas, teniendo en cuenta que la escala de trabajo es 1:25.000 lo cual representa 0,5 cm2. Para esto se utilizó gradualmente la herramienta “Eliminate”. El mapa 16 representa el resultado de la calificación de los tipos de pendiente.

Finalizado el proceso de depuración de área mínima de 2 Ha, se procedió a realizar el suavizado de los polígonos al tener en cuenta que el formato raster está compuesto por celdas o pixeles (para éste caso cuadrados que representan 30m x 30m en el terreno). Utilizando la herramienta “Smooth Polygon”, se alisaron ángulos agudos en los contornos de los polígonos para mejorar la calidad estética o cartográfica y a su vez se corrigieron errores topológicos que se pueden generar debido al proceso realizado.

El proceso de suavizado de polígonos trae consigo la generación de bastantes vértices, lo que hace que la capa se vuelva muy lenta en su visualización y edición, por lo tanto se utilizó la herramienta “Simplify Polygon”, la cual simplifica polígonos mediante la eliminación de curvas extrañas conservando la forma esencial y reduciendo la cantidad de vértices.
4.2.3.5. Paso cartográfico 5 (Calificación de los SUT preliminares).

Con base en el esquema conceptual para generar los SUT (figura 14), se realizó la calificación de los Sistemas de Uso de la Tierra (SUT) preliminares, a partir de las capas generadas anteriormente (Tipos de uso, Zonas climáticas y Tipos de pendiente). La tabla 8 describe la matriz de calificación.

<table>
<thead>
<tr>
<th>CLASE DE USO</th>
<th>TIPO DE USO</th>
<th>ZONA CLIMÁTICA</th>
<th>TIPO DE PENDIENTE</th>
<th>SISTEMA DE USO DE LA TIERRA (SUT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asentamiento urbano</td>
<td>Asentamiento urbano</td>
<td>Cálido semiárido</td>
<td>Fuertemente quebrado</td>
<td>Asentamiento urbano</td>
</tr>
<tr>
<td>Asentamiento urbano</td>
<td>Asentamiento urbano</td>
<td>Cálido semiárido</td>
<td>Ligeramente inclinado</td>
<td>Asentamiento urbano</td>
</tr>
<tr>
<td>Asentamiento urbano</td>
<td>Asentamiento urbano</td>
<td>Cálido semiárido</td>
<td>Moderadamente quebrado</td>
<td>Asentamiento urbano</td>
</tr>
<tr>
<td>Asentamiento urbano</td>
<td>Asentamiento urbano</td>
<td>Cálido semiárido</td>
<td>Plano</td>
<td>Asentamiento urbano</td>
</tr>
<tr>
<td>Infraestructura vial</td>
<td>Infraestructura vial</td>
<td>Cálido semiárido</td>
<td>Fuertemente quebrado</td>
<td>Infraestructura vial</td>
</tr>
<tr>
<td>Infraestructura vial</td>
<td>Infraestructura vial</td>
<td>Cálido semiárido</td>
<td>Ligeramente inclinado</td>
<td>Infraestructura vial</td>
</tr>
<tr>
<td>Infraestructura vial</td>
<td>Infraestructura vial</td>
<td>Cálido semiárido</td>
<td>Moderadamente quebrado</td>
<td>Infraestructura vial</td>
</tr>
<tr>
<td>Infraestructura vial</td>
<td>Infraestructura vial</td>
<td>Cálido semiárido</td>
<td>Plano</td>
<td>Infraestructura vial</td>
</tr>
<tr>
<td>Cultivos transitorios</td>
<td>Cultivos transitorios</td>
<td>Cálido semihúmedo</td>
<td>Moderalemente quebrado</td>
<td>Cultivos transitorios en clima cálido semihúmedo de baja intensidad</td>
</tr>
<tr>
<td>Cultivos transitorios</td>
<td>Cultivos de cereales</td>
<td>Cálido semihúmedo</td>
<td>Fuertemente quebrado</td>
<td>Cultivos de cereales en clima cálido semihúmedo de baja intensidad</td>
</tr>
<tr>
<td>Cultivos permanentes arbóreos</td>
<td>Palma de aceite</td>
<td>Cálido semiárido</td>
<td>Ligeramente inclinado</td>
<td>Cultivos permanentes de palma de aceite en clima cálido semiárido de alta intensidad</td>
</tr>
<tr>
<td>Cultivos permanentes arbóreos</td>
<td>Palma de aceite</td>
<td>Cálido semiárido</td>
<td>Plano</td>
<td>Cultivos permanentes de palma de aceite en clima cálido semiárido de alta intensidad</td>
</tr>
<tr>
<td>Ganadería</td>
<td>Ganadería en pastos limpios</td>
<td>Cálido semiárido</td>
<td>Fuertemente quebrado</td>
<td>Ganadería en clima cálido semiárido de baja intensidad</td>
</tr>
<tr>
<td>Ganadería</td>
<td>Ganadería en pastos limpios</td>
<td>Cálido semiárido</td>
<td>Ligeramente inclinado</td>
<td>Ganadería en clima cálido semiárido de baja intensidad</td>
</tr>
<tr>
<td>Ganadería</td>
<td>Ganadería en pastos limpios</td>
<td>Cálido semiárido</td>
<td>Moderadamente quebrado</td>
<td>Ganadería en clima cálido semiárido de moderada intensidad</td>
</tr>
<tr>
<td>Ganadería</td>
<td>Ganadería en pastos limpios</td>
<td>Cálido semiárido</td>
<td>Plano</td>
<td>Ganadería en clima cálido semiárido de alta intensidad</td>
</tr>
<tr>
<td>Ganadería</td>
<td>Ganadería en pastos limpios</td>
<td>Cálido semihúmedo</td>
<td>Fuertemente quebrado</td>
<td>Ganadería en clima cálido semihúmedo de baja intensidad</td>
</tr>
<tr>
<td>Ganadería</td>
<td>Ganadería en pastos limpios</td>
<td>Cálido semihúmedo</td>
<td>Ligeramente inclinado</td>
<td>Ganadería en clima cálido semihúmedo de alta intensidad</td>
</tr>
<tr>
<td>Ganadería</td>
<td>Ganadería en pastos limpios</td>
<td>Cálido semihúmedo</td>
<td>Moderadamente quebrado</td>
<td>Ganadería en clima cálido semihúmedo de baja intensidad</td>
</tr>
<tr>
<td>Ganadería</td>
<td>Ganadería en pastos limpios</td>
<td>Cálido semihúmedo</td>
<td>Plano</td>
<td>Ganadería en clima cálido semihúmedo de alta intensidad</td>
</tr>
<tr>
<td>Silvopastoril</td>
<td>Silvopastoril con pastos arbolados</td>
<td>Cálido semiárido</td>
<td>Fuertemente quebrado</td>
<td>Silvopastoril con pastos arbolados en clima cálido semiárido de baja intensidad</td>
</tr>
<tr>
<td>Silvopastoril</td>
<td>Silvopastoril con pastos arbolados</td>
<td>Cálido semiárido</td>
<td>Ligeramente inclinado</td>
<td>Silvopastoril con pastos arbolados en clima cálido</td>
</tr>
<tr>
<td>Silvopastoril</td>
<td>Silvopastoril con pastos arbolados</td>
<td>Cálido semiárido</td>
<td>Moderadamente quebrado</td>
<td>Silvopastoril con pastos arbolados en clima cálido semiárido de baja intensidad</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------------------------</td>
<td>-----------------</td>
<td>------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Silvopastoril</td>
<td>Silvopastoril con pastos arbolados</td>
<td>Cálido semiárido</td>
<td>Plano</td>
<td>Silvopastoril con pastos arbolados en clima cálido semiárido de alta intensidad</td>
</tr>
<tr>
<td>Silvopastoril</td>
<td>Silvopastoril con pastos arbolados</td>
<td>Cálido semihúmedo</td>
<td>Fuertemente quebrado</td>
<td>Silvopastoril con pastos arbolados en clima cálido semihúmedo de baja intensidad</td>
</tr>
<tr>
<td>Silvopastoril</td>
<td>Silvopastoril con pastos arbolados</td>
<td>Cálido semihúmedo</td>
<td>Ligeramente inclinado</td>
<td>Silvopastoril con pastos arbolados en clima cálido semihúmedo de moderada intensidad</td>
</tr>
<tr>
<td>Silvopastoril</td>
<td>Silvopastoril con pastos arbolados</td>
<td>Cálido semihúmedo</td>
<td>Moderadamente quebrado</td>
<td>Silvopastoril con pastos arbolados en clima cálido semihúmedo de baja intensidad</td>
</tr>
<tr>
<td>Ganadería</td>
<td>Ganadería en pastos enmalezados</td>
<td>Cálido semiárido</td>
<td>Fuertemente quebrado</td>
<td>Ganadería en clima cálido semiárido de baja intensidad</td>
</tr>
<tr>
<td>Ganadería</td>
<td>Ganadería en pastos enmalezados</td>
<td>Cálido semiárido</td>
<td>Ligeramente inclinado</td>
<td>Ganadería en clima cálido semiárido de alta intensidad</td>
</tr>
<tr>
<td>Ganadería</td>
<td>Ganadería en pastos enmalezados</td>
<td>Cálido semiárido</td>
<td>Moderadamente quebrado</td>
<td>Ganadería en clima cálido semiárido de moderada intensidad</td>
</tr>
<tr>
<td>Ganadería</td>
<td>Ganadería en pastos enmalezados</td>
<td>Cálido semiárido</td>
<td>Plano</td>
<td>Ganadería en clima cálido semiárido de alta intensidad</td>
</tr>
<tr>
<td>Ganadería</td>
<td>Ganadería en pastos enmalezados</td>
<td>Cálido semiárido</td>
<td>Fuertemente quebrado</td>
<td>Ganadería en clima cálido semihúmedo de baja intensidad</td>
</tr>
<tr>
<td>Ganadería</td>
<td>Ganadería en pastos enmalezados</td>
<td>Cálido semiárido</td>
<td>Ligeramente inclinado</td>
<td>Ganadería en clima cálido semihúmedo de alta intensidad</td>
</tr>
<tr>
<td>Ganadería</td>
<td>Ganadería en pastos enmalezados</td>
<td>Cálido semiárido</td>
<td>Moderadamente quebrado</td>
<td>Ganadería en clima cálido semihúmedo de baja intensidad</td>
</tr>
<tr>
<td>Ganadería</td>
<td>Ganadería en pastos enmalezados</td>
<td>Cálido semiárido</td>
<td>Plano</td>
<td>Ganadería en clima cálido semiárido de alta intensidad</td>
</tr>
<tr>
<td>Agroforestal</td>
<td>Agroforestal con cultivos, pastos y espacios naturales</td>
<td>Cálido semiárido</td>
<td>Ligeramente inclinado</td>
<td>Agroforestal con cultivos, pastos y espacios naturales en clima cálido semiárido de alta intensidad</td>
</tr>
<tr>
<td>Agroforestal</td>
<td>Agroforestal con cultivos, pastos y espacios naturales</td>
<td>Cálido semiárido</td>
<td>Plano</td>
<td>Agroforestal con cultivos, pastos y espacios naturales en clima cálido semiárido de alta intensidad</td>
</tr>
<tr>
<td>Agroforestal</td>
<td>Agroforestal con cultivos, pastos y espacios naturales</td>
<td>Cálido semihúmedo</td>
<td>Fuertemente quebrado</td>
<td>Agroforestal con cultivos, pastos y espacios naturales en clima cálido semihúmedo de baja intensidad</td>
</tr>
<tr>
<td>Agroforestal</td>
<td>Agroforestal con cultivos, pastos y espacios naturales</td>
<td>Cálido semihúmedo</td>
<td>Moderadamente quebrado</td>
<td>Agroforestal con cultivos, pastos y espacios naturales en clima cálido semihúmedo de baja intensidad</td>
</tr>
<tr>
<td>Silvopastoril</td>
<td>Silvopastoril con pastos y espacios naturales</td>
<td>Cálido semiárido</td>
<td>Fuertemente quebrado</td>
<td>Silvopastoril con pastos y espacios naturales en clima cálido semiárido de baja intensidad</td>
</tr>
<tr>
<td>Silvopastoril</td>
<td>Silvopastoril con pastos y espacios naturales</td>
<td>Cálido semiárido</td>
<td>Ligeramente inclinado</td>
<td>Silvopastoril con pastos y espacios naturales en clima cálido semiárido de moderada intensidad</td>
</tr>
<tr>
<td>Silvopastoril</td>
<td>Silvopastoril con pastos y espacios naturales</td>
<td>Cálido semiárido</td>
<td>Moderadamente quebrado</td>
<td>Silvopastoril con pastos y espacios naturales en clima cálido semiárido de baja intensidad</td>
</tr>
<tr>
<td>Silvopastoril</td>
<td>Silvopastoril con pastos y espacios naturales</td>
<td>Cálido semiárido</td>
<td>Plano</td>
<td>Silvopastoril con pastos y espacios naturales en clima cálido semiárido de alta intensidad</td>
</tr>
<tr>
<td>Silvopastoril</td>
<td>Silvopastoril con pastos y espacios naturales</td>
<td>Cálido semiárido</td>
<td>Fuertemente</td>
<td>Silvopastoril con pastos y espacios naturales en clima cálido semiárido de alta intensidad</td>
</tr>
<tr>
<td>Modo agrícola</td>
<td>Tipo de vegetación</td>
<td>Clima</td>
<td>Relieve</td>
<td>Intensidad</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------------</td>
<td>-------</td>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>Silvopastoril con pastos y espacios naturales</td>
<td>Cálido semihúmedo</td>
<td>Fuertemente quebrado</td>
<td>Fuertemente quebrado</td>
<td>Silvopastoril con pastos y espacios naturales en clima cálido semihúmedo</td>
</tr>
<tr>
<td>Natural</td>
<td>Bosque denso</td>
<td>Cálido semiárido</td>
<td>Fuertemente quebrado</td>
<td>Bosque denso en clima cálido semiárido</td>
</tr>
<tr>
<td>Natural</td>
<td>Bosque denso</td>
<td>Cálido semiárido</td>
<td>Ligeramente inclinado</td>
<td>Bosque denso en clima cálido semiárido</td>
</tr>
<tr>
<td>Natural</td>
<td>Bosque denso</td>
<td>Cálido semiárido</td>
<td>Moderadamente quebrado</td>
<td>Bosque denso en clima cálido semiárido</td>
</tr>
<tr>
<td>Natural</td>
<td>Bosque abierto</td>
<td>Cálido semiárido</td>
<td>Fuertemente quebrado</td>
<td>Bosque abierto en clima cálido semiárido</td>
</tr>
<tr>
<td>Natural</td>
<td>Bosque abierto</td>
<td>Cálido semiárido</td>
<td>Ligeramente inclinado</td>
<td>Bosque abierto en clima cálido semiárido</td>
</tr>
<tr>
<td>Natural</td>
<td>Bosque abierto</td>
<td>Cálido semiárido</td>
<td>Moderadamente quebrado</td>
<td>Bosque abierto en clima cálido semiárido</td>
</tr>
<tr>
<td>Natural</td>
<td>Bosque abierto</td>
<td>Cálido semiárido</td>
<td>Plano</td>
<td>Bosque abierto en clima cálido semiárido</td>
</tr>
<tr>
<td>Natural</td>
<td>Bosque abierto</td>
<td>Cálido semiárido</td>
<td>Fuertemente quebrado</td>
<td>Bosque abierto en clima cálido semiárido</td>
</tr>
<tr>
<td>Natural</td>
<td>Bosque abierto</td>
<td>Cálido semiárido</td>
<td>Moderadamente quebrado</td>
<td>Bosque abierto en clima cálido semiárido</td>
</tr>
<tr>
<td>Natural</td>
<td>Bosque abierto</td>
<td>Cálido semiárido</td>
<td>Ligeramente inclinado</td>
<td>Bosque abierto en clima cálido semiárido</td>
</tr>
<tr>
<td>Natural</td>
<td>Bosque abierto</td>
<td>Cálido semiárido</td>
<td>Plano</td>
<td>Bosque abierto en clima cálido semiárido</td>
</tr>
<tr>
<td>Natural</td>
<td>Bosque fragmentado</td>
<td>Cálido semiárido</td>
<td>Fuertemente quebrado</td>
<td>Bosque fragmentado en clima cálido semiárido</td>
</tr>
<tr>
<td>Natural</td>
<td>Bosque fragmentado</td>
<td>Cálido semiárido</td>
<td>Ligeramente inclinado</td>
<td>Bosque fragmentado en clima cálido semiárido</td>
</tr>
<tr>
<td>Natural</td>
<td>Bosque fragmentado</td>
<td>Cálido semiárido</td>
<td>Moderadamente quebrado</td>
<td>Bosque fragmentado en clima cálido semiárido</td>
</tr>
<tr>
<td>Natural</td>
<td>Bosque fragmentado</td>
<td>Cálido semiárido</td>
<td>Plano</td>
<td>Bosque fragmentado en clima cálido semiárido</td>
</tr>
<tr>
<td>Natural</td>
<td>Bosque fragmentado</td>
<td>Cálido semiárido</td>
<td>Fuertemente quebrado</td>
<td>Bosque fragmentado en clima cálido semiárido</td>
</tr>
<tr>
<td>Natural</td>
<td>Bosque fragmentado</td>
<td>Cálido semiárido</td>
<td>Ligeramente inclinado</td>
<td>Bosque fragmentado en clima cálido semiárido</td>
</tr>
<tr>
<td>Natural</td>
<td>Bosque fragmentado</td>
<td>Cálido semiárido</td>
<td>Moderadamente quebrado</td>
<td>Bosque fragmentado en clima cálido semiárido</td>
</tr>
<tr>
<td>Natural</td>
<td>Bosque de galería y ripario</td>
<td>Cálido semiárido</td>
<td>Fuertemente quebrado</td>
<td>Bosque de galería y ripario en clima cálido semiárido</td>
</tr>
<tr>
<td>Natural</td>
<td>Bosque de galería y ripario</td>
<td>Cálido semiárido</td>
<td>Ligeramente inclinado</td>
<td>Bosque de galería y ripario en clima cálido semiárido</td>
</tr>
<tr>
<td>Natural</td>
<td>Bosque de galería y ripario</td>
<td>Cálido semiárido</td>
<td>Moderadamente quebrado</td>
<td>Bosque de galería y ripario en clima cálido semiárido</td>
</tr>
<tr>
<td>Natural</td>
<td>Bosque de galería y ripario</td>
<td>Cálido semiárido</td>
<td>Fuertemente quebrado</td>
<td>Bosque de galería y ripario en clima cálido semiárido</td>
</tr>
<tr>
<td>Natural</td>
<td>Bosque de galería y ripario</td>
<td>Cálido semiárido</td>
<td>Ligeramente inclinado</td>
<td>Bosque de galería y ripario en clima cálido semiárido</td>
</tr>
<tr>
<td>Natural</td>
<td>Bosque de galería y ripario</td>
<td>Cálido semiárido</td>
<td>Moderadamente quebrado</td>
<td>Bosque de galería y ripario en clima cálido semiárido</td>
</tr>
<tr>
<td>Plantación forestal</td>
<td>Forestal plantado</td>
<td>Cálido semiárido</td>
<td>Ligeramente inclinado</td>
<td>Plantación forestal en clima cálido semiárido</td>
</tr>
<tr>
<td>Plantación forestal</td>
<td>Forestal plantado</td>
<td>Cálido semiárido</td>
<td>Moderadamente quebrado</td>
<td>Plantación forestal en clima cálido semiárido</td>
</tr>
</tbody>
</table>

San Juan Nepomuceno (Bolívar)
<table>
<thead>
<tr>
<th>Plantación forestal</th>
<th>Forestal plantado</th>
<th>Cálido semiárido</th>
<th>Plano</th>
<th>Plantación forestal en clima cálido semiárido</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural</td>
<td>Arbustiva natural</td>
<td>Cálido semiárido</td>
<td>Fuertemente quebrado</td>
<td>Arbustiva natural en clima cálido semiárido</td>
</tr>
<tr>
<td>Natural</td>
<td>Arbustiva natural</td>
<td>Cálido semiárido</td>
<td>Ligeramente inclinado</td>
<td>Arbustiva natural en clima cálido semiárido</td>
</tr>
<tr>
<td>Natural</td>
<td>Arbustiva natural</td>
<td>Cálido semiárido</td>
<td>Moderadamente quebrado</td>
<td>Arbustiva natural en clima cálido semiárido</td>
</tr>
<tr>
<td>Natural</td>
<td>Arbustiva natural</td>
<td>Cálido semihúmedo</td>
<td>Fuertemente quebrado</td>
<td>Arbustiva natural en clima cálido semihúmedo</td>
</tr>
<tr>
<td>Natural</td>
<td>Arbustiva natural</td>
<td>Cálido semihúmedo</td>
<td>Ligeramente inclinado</td>
<td>Arbustiva natural en clima cálido semihúmedo</td>
</tr>
<tr>
<td>Natural</td>
<td>Arbustiva natural</td>
<td>Cálido semihúmedo</td>
<td>Moderadamente quebrado</td>
<td>Arbustiva natural en clima cálido semihúmedo</td>
</tr>
<tr>
<td>Natural</td>
<td>Arbustiva natural</td>
<td>Cálido semihúmedo</td>
<td>Plano</td>
<td>Arbustiva natural en clima cálido semihúmedo</td>
</tr>
<tr>
<td>Natural</td>
<td>Vegetación secundaria o en transición</td>
<td>Cálido semiárido</td>
<td>Fuertemente quebrado</td>
<td>Vegetación secundaria o en transición en clima cálido semiárido</td>
</tr>
<tr>
<td>Natural</td>
<td>Vegetación secundaria o en transición</td>
<td>Cálido semiárido</td>
<td>Ligeramente inclinado</td>
<td>Vegetación secundaria o en transición en clima cálido semiárido</td>
</tr>
<tr>
<td>Natural</td>
<td>Vegetación secundaria o en transición</td>
<td>Cálido semiárido</td>
<td>Moderadamente quebrado</td>
<td>Vegetación secundaria o en transición en clima cálido semiárido</td>
</tr>
<tr>
<td>Natural</td>
<td>Vegetación secundaria o en transición</td>
<td>Cálido semiárido</td>
<td>Plano</td>
<td>Vegetación secundaria o en transición en clima cálido semiárido</td>
</tr>
<tr>
<td>Natural</td>
<td>Vegetación secundaria o en transición</td>
<td>Cálido semihúmedo</td>
<td>Fuertemente quebrado</td>
<td>Vegetación secundaria o en transición en clima cálido semihúmedo</td>
</tr>
<tr>
<td>Natural</td>
<td>Vegetación secundaria o en transición</td>
<td>Cálido semihúmedo</td>
<td>Ligeramente inclinado</td>
<td>Vegetación secundaria o en transición en clima cálido semihúmedo</td>
</tr>
<tr>
<td>Natural</td>
<td>Vegetación secundaria o en transición</td>
<td>Cálido semihúmedo</td>
<td>Moderadamente quebrado</td>
<td>Vegetación secundaria o en transición en clima cálido semihúmedo</td>
</tr>
<tr>
<td>Zonas acuáticas</td>
<td>Zonas pantanosas</td>
<td>Cálido semiárido</td>
<td>Moderadamente quebrado</td>
<td>Zonas pantanosas en clima cálido semiárido</td>
</tr>
<tr>
<td>Zonas acuáticas</td>
<td>Zonas pantanosas</td>
<td>Cálido semiárido</td>
<td>Plano</td>
<td>Zonas pantanosas en clima cálido semiárido</td>
</tr>
<tr>
<td>Zonas acuáticas</td>
<td>Zonas pantanosas</td>
<td>Cálido semihúmedo</td>
<td>Ligeramente inclinado</td>
<td>Zonas pantanosas en clima cálido semihúmedo</td>
</tr>
<tr>
<td>Zonas acuáticas</td>
<td>Zonas pantanosas</td>
<td>Cálido semihúmedo</td>
<td>Plano</td>
<td>Zonas pantanosas en clima cálido semihúmedo</td>
</tr>
<tr>
<td>Zonas acuáticas</td>
<td>Ríos</td>
<td>Cálido semiárido</td>
<td>Plano</td>
<td>Ríos</td>
</tr>
<tr>
<td>Zonas acuáticas</td>
<td>Lagunas y ciénagas</td>
<td>Cálido semiárido</td>
<td>Ligeramente inclinado</td>
<td>Lagunas y ciénagas</td>
</tr>
<tr>
<td>Zonas acuáticas</td>
<td>Lagunas y ciénagas</td>
<td>Cálido semiárido</td>
<td>Moderadamente quebrado</td>
<td>Lagunas y ciénagas</td>
</tr>
<tr>
<td>Zonas acuáticas</td>
<td>Lagunas y ciénagas</td>
<td>Cálido semiárido</td>
<td>Plano</td>
<td>Lagunas y ciénagas</td>
</tr>
<tr>
<td>Zonas acuáticas</td>
<td>Lagunas y ciénagas</td>
<td>Cálido semihúmedo</td>
<td>Ligeramente inclinado</td>
<td>Lagunas y ciénagas</td>
</tr>
<tr>
<td>Infraestructura</td>
<td>Infraestructura hídrica</td>
<td>Cálido semiárido</td>
<td>Ligeramente inclinado</td>
<td>Infraestructura hídrica</td>
</tr>
<tr>
<td>Infraestructura</td>
<td>Infraestructura hídrica</td>
<td>Cálido semiárido</td>
<td>Plano</td>
<td>Infraestructura hídrica</td>
</tr>
<tr>
<td>Infraestructura</td>
<td>Cuerpos de agua artificiales</td>
<td>Cálido semiárido</td>
<td>Moderadamente quebrado</td>
<td>Cuerpos de agua artificiales</td>
</tr>
<tr>
<td>Infraestructura</td>
<td>Infraestructura para acuicultura continental</td>
<td>Cálido semiárido</td>
<td>Ligeramente inclinado</td>
<td>Infraestructura para acuicultura continental</td>
</tr>
</tbody>
</table>

Con las capas espaciales tipos de uso, zonas climáticas y tipos de pendiente ya generadas, se procedió a realizar una unión geométrica entre las mismas, en donde las
geometrías y sus atributos se escriben en una capa espacial de salida. Para esto se utilizó la herramienta “Union”.

Con la matriz de calificación (tabla 8), se generó un nuevo atributo (sistema de uso) en la capa espacial resultante de la unión, con el objeto de calcular el dato de los SUT a partir de una unión entre la matriz de calificación y la capa espacial. Para esto se utilizó la herramienta “Join” y la herramienta “Field Calculator”.

Posteriormente se creó una nueva capa espacial (Sistemas de Uso de la Tierra) mediante la fusión de polígonos adyacentes con el mismo valor entre los tipos de uso, las zonas climáticas, los tipos de pendientes y los SUT, utilizando la herramienta “Dissolve”. A esta capa resultante, se le realizó una depuración cartográfica por área mínima de 2 hectáreas, teniendo en cuenta que la escala de trabajo es 1:25.000 lo cual representa 0,5 cm². Para esto se utilizó gradualmente la herramienta “Eliminate”. El mapa 17 representa el resultado de la calificación de las categorías de los SUT preliminares.
Evaluación de la degradación de las tierras a nivel local – San Juan Nepomuceno (Bolívar)

Mapa 17. Mapa preliminar de los Sistemas de Uso de las Tierras (SUT).
4.2.3.6. Paso cartográfico 6 (adición de atributos biofísicos y socioeconómicos).

Con la capa espacial, Sistemas de Uso de las Tierras preliminares generada a partir de la calificación entre las capas tipos de uso, zonas climáticas y tipos de pendiente, se procedió a unirle el atributo biofísico como dato complementario.

Por lo anterior se procedió a realizar una unión geométrica entre las capas espaciales Sistemas de Uso de la Tierra preliminares, cobertura de la tierra y unidades cartográficas de suelo; en donde las geometrías y sus atributos se escriben en una capa espacial de salida. La herramienta que se utilizó fue “Union”.

A la capa resultante (Sistemas de Uso de las Tierras Preliminar), se le realizó una depuración cartográfica por área mínima de 2 hectáreas, teniendo en cuenta que la escala de trabajo es 1:25,000 lo cual representa 0,5 cm². Para esto se utilizó gradualmente la herramienta “Eliminate”.

4.2.4. Trabajos en campo y taller de expertos (Validación de los SUT).

4.2.4.1. Trabajos en campo.

Para la validación y verificación de las unidades de SUT preliminares fue necesario realizar trabajos en campo, por lo tanto, se elaboraron transectos transversales (mapa 18) a las unidades básicas de evaluación de SUT permitiendo abarcar y caracterizar una gran gama de unidades utilizando formularios de captura de información (figura 16) a partir de herramientas sistematizadas.

Para esto se preparó material documental y cartográfico en formato análogo y digital. Como material análogo, se elaboraron formularios de captura de información y mapas que representaran los SUT preliminares por cada departamento del área piloto, mientras que como material digital se elaboró una base de datos online que contiene la capa espacial de SUT preliminares, los transectos propuestos y la capa espacial que sistematiza el formulario de captura de información.

Esta base de datos se elaboró bajo módulos del software ArcGIS como ArcGIS Collector, permitiendo preparar la información espacial para campo por medio de mapas digitales, los cuales permiten la manipulación y captura de datos en el terreno, para finalmente, integrar la información en una base de datos geográfica en tiempo real.

Con el mapa y la base de datos alojada en ArcGIS Online, se procedió a la toma de puntos en campo los cuales permitieran la validación, verificación y/o ajuste de las unidades de SUT preliminares. Esto se realizó por medio de dispositivos electrónicos como tabletas y/o celulares con sistemas de posicionamiento global (GPS). El mapa 19 representa los puntos tomados en campo.
Mapa 18. Mapa de transectos para el trabajo en campo.
Evaluación de la degradación de las tierras a nivel local – San Juan Nepomuceno
(Bolívar)

<table>
<thead>
<tr>
<th>I. INFORMACIÓN GENERAL</th>
<th>10/04/2018</th>
<th>Descrito por:</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. Identificador</td>
<td>Fecha (dd/mm/aaaa)</td>
<td></td>
</tr>
</tbody>
</table>

Unidad Administrativa
San Juan Nepomuceno

Clase de Uso de la Tierra
- Plantación forestal
- Agroforestal
- Cultivos permanentes
- Cultivos transitorios
- Ganadería

II. LOCALIZACIÓN

<table>
<thead>
<tr>
<th>DEPARTAMENTO</th>
<th>MUNICIPIO</th>
<th>VEREDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bolívar</td>
<td>San Juan Nepomuceno</td>
<td></td>
</tr>
</tbody>
</table>

Coordenadas Geográficas

<table>
<thead>
<tr>
<th>GPS</th>
<th>Mapa</th>
<th>Otro</th>
</tr>
</thead>
</table>

III. DESCRIPCIÓN GENERAL DEL ENTORNO

<table>
<thead>
<tr>
<th>Geomorfología</th>
<th>Pendiente</th>
<th>Inclinación de la pendiente</th>
<th>Clima</th>
<th>Clima Ambiental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Montaña</td>
<td>Recta</td>
<td>a (0-3%)</td>
<td>Seca</td>
<td>Cálido</td>
</tr>
<tr>
<td>Lomero</td>
<td>Convexa</td>
<td>b (3-7%)</td>
<td>Lluviosa</td>
<td>Templado</td>
</tr>
<tr>
<td>Piedemonte</td>
<td>Cóncava</td>
<td>c (7-12%)</td>
<td>Lluvias con lluvias cortas</td>
<td>Frío</td>
</tr>
<tr>
<td>Superficie de aplanamiento</td>
<td>Irregular</td>
<td>e (15-25%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valle</td>
<td>Irregular</td>
<td>o (25-50%)</td>
<td>Lluvias</td>
<td>Provincia de Humedad</td>
</tr>
<tr>
<td>Altiplano</td>
<td>Irregular</td>
<td>o (>75%)</td>
<td>Árido</td>
<td>Semi-árido</td>
</tr>
</tbody>
</table>

Cobertura

<table>
<thead>
<tr>
<th>Bosques</th>
<th>Arborales</th>
<th>Veg. Xerofítica</th>
<th>Veg. Secundaria</th>
<th>Mosaico de pastos y espacios naturales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pastos limpios</td>
<td>Pastos arbolados</td>
<td>Cultivos transitorios</td>
<td>Cultivos permanentes</td>
<td>Mosaico de pastos con espacios naturales</td>
</tr>
</tbody>
</table>

IV. TIPO DE USO Y ATRIBUTOS DEL USO DE LA TIERRA

<table>
<thead>
<tr>
<th>Tipo de Uso</th>
<th>Cultivos permanentes</th>
<th>Cultivos transitorios</th>
<th>Plantación forestal</th>
<th>Ganadería</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agroforestal</td>
<td>Arroz</td>
<td>Teca</td>
<td>Teca</td>
<td>Ganado bovino</td>
</tr>
</tbody>
</table>

| Arboles en asociación con | Palma | Cacao | Caúcho | Algodón | Patilla | Melón | Cebolla | Ganado Ovino y caprino |
| Arboles en asociación con | Coco | Yuca | Name | Algodón | Patilla | Melón | Cebolla | Ganado porcino |

<table>
<thead>
<tr>
<th>Huertos familiares</th>
<th>Pastoreo en plantaciones maderables o frutales</th>
<th>Barreras vivas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mosaico de pastos con espacios naturales</td>
<td>o curso</td>
<td>Otra</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sistemas agrosilvopastoriles</th>
<th>Pastoreo intercalado entre potreros</th>
<th>Pastoreo en plantaciones maderables o frutales</th>
<th>Barreras vivas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Otro</td>
<td>Otro</td>
<td>Otro</td>
<td>Otro</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Atributos del Uso de la Tierra</th>
<th>Propósito del Ganado Dominante</th>
<th>Tipo Cultivo dominante</th>
<th>Sistema de riego</th>
<th>Prácticas de Manejo de Cultivos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carne</td>
<td>Arroz</td>
<td>Gravedad</td>
<td>Mecanización</td>
<td></td>
</tr>
<tr>
<td>Leche</td>
<td>Maíz</td>
<td>Induración</td>
<td>Laboreo y labranza</td>
<td></td>
</tr>
<tr>
<td>Huevos</td>
<td>Plátano</td>
<td>Goteo</td>
<td>Fertilización</td>
<td></td>
</tr>
<tr>
<td>Cueros</td>
<td>Yuca</td>
<td>Apuración</td>
<td>Desacoplo y desyerba</td>
<td></td>
</tr>
<tr>
<td>Lana</td>
<td>Name</td>
<td>Silvia</td>
<td>Acequias y canales</td>
<td></td>
</tr>
<tr>
<td>Otro</td>
<td>Algodón</td>
<td>Pivote</td>
<td>Riego</td>
<td></td>
</tr>
<tr>
<td>Otro</td>
<td>Patilla</td>
<td>Otro</td>
<td>Drenaje</td>
<td></td>
</tr>
<tr>
<td>Otro</td>
<td>Melón</td>
<td>Otra</td>
<td>Ninguna</td>
<td></td>
</tr>
<tr>
<td>Otro</td>
<td>Cebolla</td>
<td>Otra</td>
<td>Otra</td>
<td></td>
</tr>
<tr>
<td>Otro</td>
<td>Palma</td>
<td>Otra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Otro</td>
<td>Cacao</td>
<td>Otra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Otro</td>
<td>Caúcho</td>
<td>Otra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Otro</td>
<td>Coco</td>
<td>Otra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Otro</td>
<td>Otro</td>
<td>Otra</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figura 16. Formulario para captura de información en campo.
Evaluación de la degradación de las tierras a nivel local – San Juan Nepomuceno (Bolívar)

Mapa 19. Mapa de captura de datos en campo.
4.2.4.2. Taller de expertos, aplicación del cuestionario (Q2).

Con la validación, verificación y/o ajuste de las unidades de SUT preliminares en campo, se procedió a realizar el taller de expertos (fotografía 1), tal como se indicó en el capítulo 4.1, los días 11 y 12 de abril del año 2018 en el municipio de San Juan Nepomuceno (Bolívar) Universidad de Cartagena (Sede San Juan Nepomuceno), definido como “TALLER EVALUACIÓN DE LA DEGRADACIÓN DE TIERRAS, PRACTICAS MST E INSTRUMENTOS DE PLANIFICACION TERRITORIAL ZONA PILOTO LOCAL – MUNICIPIO DE SAN JUAN NEMOPUCENO”.

Fotografía 1. Taller de expertos en San Juan Nepomuceno, área piloto a nivel local.

La apertura del taller empezó con la bienvenida y presentación del proyecto SD-MST en Colombia por parte del coordinador Javier Otero (ver agenda en el anexo 4); posteriormente se organizaron dos temas para el día 11 de abril de 2018, evaluación de la degradación de las tierras y capacitación en MST; y otros dos temas para el día 12 de abril de 2018, incorporación del enfoque de MST en instrumentos de planificación territorial y un ejercicio en terreno de muestreo e indicadores de impacto.

Dentro de la dinámica del taller, se organizaron mesas de trabajo (fotografía 2) con los objetivos de realizar aportes para la validación y ajuste de las unidades de los SUT (fotografía 3) bajo el manejo de material didáctico (mapa preliminar de cobertura de la tierra, mapa preliminar de los SUT) como el diligenciamiento de los cuestionarios Q2, Q3, Q4 y Q5 por cada SUT validado anteriormente.
Diligenciado el cuestionario 1 (Q1) y validados los SUT, se procedió con el diligenciamiento del cuestionario 2 (Q2, figura 17), en el cual se estimó el incremento o la reducción del área en los últimos 10 años para cada SUT, así mismo, se estimó el aumento o descenso en la intensidad de cada SUT. El anexo 5 recopila los cuestionarios (Q2) diligenciados en el taller de expertos. A continuación se describe la manera de indicar la tendencia del área y la tendencia en la intensidad del SUT, según la herramienta de mapeo por cuestionarios (MapQuest):

a) Tendencia del área con SUT (Conductores directos)

Considera el aumento o la disminución de la tendencia del área de los, aproximadamente, últimos 10 años. Los cambios en la extensión del área del SUT se encuentran representados por las siguientes cinco clases:
Evaluación de la degradación de las tierras a nivel local – San Juan Nepomuceno (Bolívar)

2: El tamaño de la cobertura del área está aumentando rápidamente; por ej. > 10% del área del SUT/10 años.
1: El tamaño de la cobertura del área está aumentando lentamente; por ej. < 10% del área del SUT/10 años.
0: La cobertura del área permanece estable.
-1: El tamaño de la cobertura del área está disminuyendo lentamente; por ej. < 10% del área del SUT/10 años.
-2: El tamaño de la cobertura del área está disminuyendo rápidamente; por ej. > 10% del área del SUT/10 años.

b) Tendencias en la intensidad del uso de la tierra (Conductores directos)

Este se expresa a través de los cambios en los insumos, manejos, o números de cosechas en los sistemas a base de granos, la introducción de la rotación de pasturas y las barreras en, por ejemplo, las tierras pastoriles o la introducción de caminos pavimentados en los sistemas urbanos. La estimación requerida busca cubrir un periodo de aproximadamente los últimos 10 años. Se considerarán aquí solo los cambios ocurridos dentro del sistema de uso de la tierra, no los cambios de un sistema de uso de la tierra a otro.

2: Aumento principal: por ej. del trabajo manual a la mecanización, de los insumos externos leves a los insumos externos fuertes, etc.
1: Aumento moderado: por ej. el cambio del no o bajo uso de insumos externos leves a algunos fertilizantes / pesticidas; el cambio del trabajo manual a la tracción animal.
0: Cambios no relevantes en los insumos, niveles de manejo, etc.
-1: Una disminución leve en la intensidad del uso de la tierra; por ej. una disminución ligera de los insumos externos.
-2: Una reducción importante en la intensidad del uso de la tierra; por ej. de la mecanización al trabajo manual, o una amplia reducción de los insumos externos.

<table>
<thead>
<tr>
<th>Sistema/Clasificación del Uso de la Tierra (paso 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unidades Administrativas u otras</td>
</tr>
<tr>
<td>Distrito xy</td>
</tr>
</tbody>
</table>

Figura 17. Cuestionario (Q2). Paso 2, sistema/clasificación del uso de las tierras (MapQuest).
4.2.5. Validación del mapa de SUT.

A partir de la generación de los SUT preliminares (capítulo 4.2.3), más el trabajo en campo y el aporte por especialistas en el taller de expertos, se logró ajustar y validar las unidades de SUT para así generar el mapa final en el área piloto.

Con la metodología propuesta para generar las unidades de los SUT preliminares ya desarrollada (figura 18), se procedió a realizar el ajuste de dichas unidades a partir de los puntos tomados en campo y posteriormente a partir de los ajustes realizados en los mapas análogos trabajados en el taller de expertos.

Con el mapa preliminar de SUT, se procedió a representarlo por medio de la clase de uso (clase general) y así validar y/o ajustar las unidades a partir de los puntos tomados en campo. Para esto se realizó la revisión tanto de la calificación (Clase de uso) como de la delimitación de las unidades de SUT (límite cartográfico) a un gran detalle sobre el mapa digital, con base en la calificación que se haya dado en la toma de cada punto en campo.

La figura 19, describe el ejemplo de la revisión de tres de los puntos tomados en campo sobre el mapa preliminar de los SUT, a los cuales se les realizó el ajuste como la validación respectivamente, con base en la interpretación en campo (fotografía tomada en campo para cada punto).

Para el caso del punto 1, la fotografía tomada en campo identifica que la calificación de la clase de uso es plantación forestal (teca), mientras que el mapa preliminar se encuentra
calificado como natural (cobertura de bosque). Para éste caso se procedió a ajustar tanto la calificación como la delimitación con base en la imagen satelital.

Para el caso del punto 2, la fotografía tomada en campo identifica que la calificación de la clase de uso es agroforestal (quema), mientras que el mapa preliminar se encuentra calificado como natural (cobertura de bosque). Para éste caso se procedió a ajustar tanto la calificación como la delimitación con base en la imagen satelital.

Para el caso del punto 3, la fotografía tomada en campo identifica que la calificación de la clase de uso es ganadería (extensiva), validando la unidad del mapa preliminar la cual se encuentra calificada como ganadería.

![Figura 19. Proceso de validación y/o ajuste de las unidades de SUT según trabajo en campo.](image)

El anterior proceso se realizó para los transectos determinados en campo, permitiendo no solo la validación y/o ajuste de los SUT, si no también, de las coberturas de la tierra.

Esto se desarrolló bajo la base de datos online generada y desarrollada en ArcGIS Collector. Esta base de datos permitió identificar la localización de los puntos tomados en campo (coordenadas de latitud y longitud); permitió verificar las características del mismo a partir del formulario creado para la captura de información (figura 16, capítulo 4.2.4.1); permitió identificar los registros tomados en campo, como son las fotografías. La figura 20 representa las características indicadas con el manejo de la base de datos online a partir del módulo de ArcGIS, ArcGIS – Collector.
Evaluación de la degradación de las tierras a nivel local – San Juan Nepomuceno (Bolívar)

Figura 20. Base de datos alojada con ArcGIS – Collector para el trabajo en campo.

Realizado el proceso de validación y/o ajuste se evidenció que el mapa preliminar de SUT se acercaba bastante a la realidad, por lo tanto se comprobó la validación de un gran porcentaje de unidades de SUT y para otro porcentaje pequeño se ajustaron las unidades de los SUT preliminares. Para éste último caso se ajustaron unidades de clase de uso natural tanto a plantación forestal (teca y eucalipto) como a clase agroforestal.

Con el ajuste realizado sobre las unidades de SUT preliminares con base en el trabajo en campo, como sobre las unidades de cobertura de las tierras preliminares, se procedió a realizar los ajustes pertinentes arrojados en el taller de expertos. Para esto se realizó una revisión en las zonas que identificaron los participantes sobre los mapas y así validar y/o ajustar la calificación. Para validar la delimitación se realizó con base en imágenes satelitales las cuales permitieron validar el nuevo límite de dicha unidad. De esta manera los participantes aprobaron y acogieron la metodología trabajada para la evaluación de la degradación de tierras, así como el mapa de los SUT.

La figura 21 describe el aporte que ofreció el taller de expertos para validar y/o ajustar las unidades de los SUT preliminares como las unidades de cobertura de la tierra.
Figura 21. Material trabajado en el taller de expertos para la validación y/o ajuste de las unidades de los SUT preliminares.

Con el ajuste realizado sobre las unidades de SUT preliminares con base en el trabajo en campo y el taller de expertos, se generó el mapa de la cobertura de la tierra validada como el de los Sistemas de Uso de las Tierras validado (SUT) en el área piloto (mapa 20, 21 y figura 22).
Evaluación de la degradación de las tierras a nivel local – San Juan Nepomuceno (Bolívar)

Mapa 20. Mapa de cobertura de la tierra validado
Mapa 21. Mapa de Sistemas de Uso de las Tierras (SUT) validado.
La capa espacial que representa el mapa de los SUT sobrellevó unos geoprocésamientos bajo el software ArcGIS 10.4, con el objeto de garantizar consistencia temática y cartográfica. Dichos geoprocésamientos se describen a continuación por pasos cartográficos.

Figura 22. Leyenda del mapa de los Sistemas de Uso de las Tierras (SUT) validado.
4.2.5.1. Paso cartográfico 1 (Incorporación de áreas protegidas regionales).

Con la capa espacial validada y/o ajustada de los Sistemas de Uso de las Tierras, la cual contiene los atributos biofísicos y socioeconómicos adicionales. Se procedió a incorporarle las áreas protegidas regionales correspondientes al municipio de San Juan Nepomuceno (Bolívar).

Por lo anterior se procedió a realizar una actualización geométrica entre las capas espaciales Sistemas de Uso de las Tierras y áreas protegidas regionales, en donde reemplaza las áreas de la capa espacial SUT con los polígonos de la capa espacial de actualización, áreas protegidas regionales, por medio de una operación interna de cortar y pegar. La herramienta que se utilizó fue “Update”.

A la capa resultante (Sistemas de Uso de las Tierras), se le realizó una depuración cartográfica por área mínima de 2 hectáreas a excepción de polígonos clasificados como cultivos transitorios, asentamiento urbano y minería, éstos con área mínima de 0,3 Ha. Para esto se utilizó gradualmente la herramienta “Eliminate” arrojando como resultado final una capa espacial con 2.918 registros.

4.2.5.2. Paso cartográfico 2 (Incorporación del límite veredal).

Con el objeto de involucrar una unidad administrativa (límite veredal) la cual permite un análisis de gestión, se incorporó la capa espacial de veredas, suministrada por la sociedad colombiana de arquitectos (responsables del POT).

Por lo anterior se procedió a realizar una unión geométrica entre las capas espaciales Sistemas de Uso de la Tierra y el límite veredal, en donde las geometrías y sus atributos se escriben en una capa espacial de salida. La herramienta que se utilizó fue “Union”.

A esta capa resultante no se le realizó depuración cartográfica por área mínima, con el objeto de no modificar los límites administrativos (límite veredal).

4.2.5.3. Paso cartográfico 3 (Incorporación de frontera agrícola).

Con el objeto de involucrar una unidad administrativa bajo el concepto productivo, la cual permite un análisis de gestión agrícola, se incorporó la capa espacial de la frontera agrícola. Esta involucra áreas ambientales y áreas de frontera agrícola.

Por lo anterior se procedió a realizar una unión geométrica entre las capas espaciales Sistemas de Uso de la Tierra y la frontera agrícola, en donde las geometrías y sus atributos se escriben en una capa espacial de salida. La herramienta que se utilizó fue “Union”.

4.2.5.4. Paso cartográfico 4 (fusión de polígonos adyacentes).

Posteriormente se creó una nueva capa espacial (Sistemas de Uso de las Tierras) mediante la fusión de polígonos adyacentes con el mismo valor entre las clases de uso, tipos de uso, zonas climáticas, tipos de pendientes, SUT, cobertura de la tierra, unidades cartográficas de suelo, áreas protegidas regionales, veredas, corregimientos y frontera agrícola; utilizando la herramienta “Dissolve”. El resultado final es una capa espacial con
10.336 registros. A esta capa resultante no se le realizó depuración cartográfica por área mínima, debido que el insumo de la frontera agrícola no discrimina áreas mínimas cartografiables.

4.2.5.5. Paso cartográfico 5 (Consistencia topológica).

Como último paso, se realizaron geoprocesamientos topológicos los cuales definen las relaciones espaciales permitidas entre capas espaciales o entre la misma capa espacial. Las reglas topológicas trabajadas fueron: No debe superponerse (Must Not Overlap) y No debe haber huecos (Must Not Have Gaps).

4.3. Degradación de las tierras por SUT (Q3).

Tal como se indicó en el capítulo 1, la definición de degradación enmarcados en la política para la gestión sostenible del suelo, es “el resultado de la interacción de factores naturales y antrópicos que activan y desencadenan procesos que generan cambios negativos en las propiedades del suelo” (MINAMBIENTE, 2015). Procesos físicos, químicos y biológicos como:

- Erosión.
- Disminución de materia orgánica.
- Movimientos en masa.
- Contaminación.
- Sellamiento.
- Compactación.
- Pérdida de biodiversidad.
- Pérdida de la fertilidad.
- Salinización.

La degradación química puede deberse a varias causas: pérdida de nutrientes, acidificación, salinización, sodificación, aumento de la toxicidad por liberación o concentración de determinados elementos químicos. El deterioro del suelo a veces es consecuencia de una degradación física, por: pérdida de estructura, aumento de la densidad aparente, disminución de la permeabilidad, disminución de la capacidad de retención de agua. En otras ocasiones por degradación biológica, cuando se produce una disminución de la materia orgánica incorporada y una pérdida de la biodiversidad.

La degradación de la tierra abarca un alcance más amplio que la erosión y degradación de suelos en conjunto ya que cubre todos los cambios negativos en la capacidad del ecosistema para prestar bienes y servicios (incluso biológicos y servicios y bienes relacionados con el agua – in en visión de LADA- y también su relación con bienes y servicios sociales y económicos). (FAO, 2018)

Dentro de la metodología de evaluación de la degradación de las tierras (herramienta de mapeo), es necesario para cada sistema de uso de las tierras (SUT) evaluar la degradación de las mismas (figura 23) con base en el cuestionario número 3 (Q3), el cual permite indicar:
• Los principales tipos de degradación de la tierra (incluyendo la superposición de los tipos de degradación) que actualmente ocurren bajo cada sistema de uso de la tierra.
• La extensión actual de los tipos identificados de degradación de tierras o de las superposiciones como porcentaje (representativo) del área del sistema de uso de la tierra.
• El grado actual (cualitativo) de degradación de la tierra para los tipos o superposiciones identificadas.
• La tasa estimada de la degradación de la tierra sobre los últimos 10 años.
• El impacto estimado sobre los Servicios del Ecosistema (ESS) para los tipos o superposiciones de degradación.
• Las causas directas (biofísicas) de la degradación de la tierra.
• Las causas indirectas (socioeconómicas) de la degradación de la tierra.

Figura 23. Degradación de las tierras por cada SUT. Paso 3 del cuadro metodológico para la evaluación de la degradación de las tierras en el área piloto.

Esta metodología permite identificar indicadores de estado, presión e impacto de la degradación de las tierras por cada sistema de uso de las mismas de manera estimada.

El Gobierno Colombiano, preocupado por los continuos y profundos procesos de degradación de las tierras y por su impacto negativo en las condiciones ambientales, económicas y sociales, ratificó mediante Ley 461 del 4 de agosto de 1998 el tratado de la Convención de las Naciones Unidas de lucha contra la Desertificación y la Sequía (UNCCD), la cual fue aprobada en París el 17 de junio de 1994. Hasta el momento 191 países han ratificado la Convención. Colombia entró a ser parte de la misma a partir del 8 de septiembre de 1999.

Con el objeto de implementar la convención, Colombia ha avanzado en el estudio del estado de la degradación de las tierras por procesos físicos (erosión) y procesos químicos (salinización). Como se mencionó en el capítulo 1, según datos del Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM), Ministerio de Ambiente y Desarrollo Sostenible y la Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A.) se estimó que en el año 2015 el 40% de la superficie continental de Colombia presenta algún grado de degradación de suelos por erosión. Mientras que para el año 2017 se estimó que el
7,9% de la superficie continental presenta algún grado de degradación de suelos por salinización.

Un estudio de estado de los suelos por degradación que carece en Colombia es bajo procesos biológicos, el cual permita identificar la pérdida de la biodiversidad (organismos vivos) y la disminución de la materia orgánica (organismos de origen animal y vegetal, parcial y/o totalmente descompuestos o transformados), siendo los efectos más notorios debidos a la ocurrencia de los procesos de degradación biológica.

Esto repercute sobre diferentes funciones del suelo como, entre las más importantes para suelos agrícolas están la transformación, reciclado y posterior asimilación de los nutrientes por las plantas. También el acomodamiento y la persistencia de los minerales del suelo en unidades específicas (estructura) que contribuyen a sostener el espacio poroso que va a asegurar el traslado del agua de lluvia y/o de riego por el suelo y la eliminación de los excesos. Además del desplazamiento del aire dentro y fuera del suelo. Está ampliamente demostrado que el uso intensivo del suelo y la aplicación de tecnología inadecuada se constituye en las principales causas de la ocurrencia de estos procesos de degradación biológica en suelos agrícolas. (PISCITELLI, 2015)

Los avances en los estudios del estado de la degradación de las tierras en Colombia permiten determinar qué tipos de degradación se presentan en el territorio, como son, bajo procesos físicos y químicos, creándose la necesidad en éste proyecto de generar una aproximación bajo procesos biológicos; cuál es su extensión y qué grado de afectación contienen. Con estos estudios se procedió a realizar el mapa de degradación de las tierras bajo información nacional (escala 1:100.000). Con el objeto de identificar de manera general el estado de la degradación en el área piloto.

Adicionalmente se abordó el paso 3 (degradación de las tierras por cada SUT) de la herramienta de mapeo por cuestionarios (MapQuest) bajo el diligenciamiento del cuestionario (Q3), con el objeto de determinar el estado, la presión y los impactos de la degradación de las tierras con un detalle local (escala 1:25.000).

Con lo anterior se indica, que los resultados del estado de la degradación de las tierras en el área piloto bajo información nacional (1:100.000), permiten realizar una revisión respecto a la calidad de la información del estado obtenido de la degradación de las tierras en el área piloto bajo la herramienta de mapeo por cuestionarios (MapQuest) con nivel de detalle local (1:25.000), verificando que exista consistencia lógica en los resultados.

Por lo tanto fue necesario homologar la calificación del grado de degradación entre los resultados nacionales y locales. La calificación del grado de las fuentes de información a nivel nacional se homologó a la calificación del grado de la herramienta de mapeo por cuestionarios (MapQuest) de la siguiente manera: Muy ligero a Sin evidencia, Ligero a Leve, Moderado quedó igual, Severo a Fuerte y Muy severo a Extremo. A continuación se describe cada uno:

- **Leve**: Existen algunas indicaciones de degradación, pero el proceso aún se encuentra en una etapa inicial. Este puede ser fácilmente frenado y el daño puede ser reparado con un menor esfuerzo.
• **Moderado**: La degradación es obvia, pero el control y la rehabilitación completa de la tierra aún es posible con un esfuerzo considerable.

• **Fuerte**: Signos evidentes de degradación. Los cambios en las propiedades de la tierra son significativas y de muy difícil restauración dentro de un límite de tiempo razonable.

• **Extremo**: La degradación está más allá de la restauración.

Dentro del desarrollo de éste capítulo se describen dichos procesos, mientras que en el capítulo de resultados se recopila lo obtenido.

4.3.1. **Fuentes de información para la clasificación de la degradación de las tierras bajo información nacional.**

El proceso para zonificar la degradación de las tierras bajo información nacional, comienza con la recopilación de la información existente en un Sistema de Información Geográfica (SIG), siendo las capas existentes, las siguientes:

• Mapa de degradación de suelos por erosión (IDEAM).

• Mapa de degradación de suelos por salinización (IDEAM).

Como capas de apoyo o de aporte para generar una propuesta de estado de degradación por procesos biológicos de manera preliminar, las siguientes:

• Mapa de ecosistemas (IDEAM).

• Modelo Digital de Elevación – DEM 30 metros (IGAC).

Como capa de análisis de degradación de las tierras, la siguiente:

• Mapa de Sistemas de Usos de la Tierra (FAO/SD-MST en Colombia).

Para esto se realizó una búsqueda de información existente (información secundaria) en las bases de datos de la Unidad de Planificación Rural Agropecuaria (UPRA), como en el geoservicio del Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM); que cumpla con el cubrimiento del área piloto a nivel local, recordando que por ser información nacional el nivel de detalle mínimo es para una escala 1:100.000, pero que servirá como información referente de la zona. En la tabla 9 se describen los insumos necesarios para el desarrollo del mapa de degradación de las tierras por cada sistema de uso de las mismas, bajo información nacional.

Tabla 9. Fuentes de información secundaria (Degradación bajo información nacional).

<table>
<thead>
<tr>
<th>TEMA</th>
<th>INSUMO</th>
<th>FORMATO</th>
<th>ESCALA</th>
<th>SISTEMA</th>
<th>FUENTE</th>
<th>AÑO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suelo</td>
<td>Degradación de suelos por erosión</td>
<td>shp</td>
<td>1:100.000</td>
<td>MAGNA</td>
<td>IDEAM</td>
<td>2015</td>
</tr>
<tr>
<td>Suelo</td>
<td>Degradación de suelos por salinización</td>
<td>shp</td>
<td>1:100.000</td>
<td>MAGNA</td>
<td>IDEAM</td>
<td>2017</td>
</tr>
<tr>
<td>Ecología</td>
<td>Ecosistemas</td>
<td>shp</td>
<td>1:100.000</td>
<td>MAGNA</td>
<td>IDEAM</td>
<td>2016</td>
</tr>
<tr>
<td>Base Cartográfica</td>
<td>Modelo digital terreno (30m)</td>
<td>img</td>
<td>30 metros</td>
<td>SIRGAS</td>
<td>IGAC</td>
<td></td>
</tr>
<tr>
<td>Suelo</td>
<td>Sistemas de uso de la tierra</td>
<td>mdb</td>
<td>1:100.000</td>
<td>MAGNA</td>
<td>FAO/SD-MST en Colombia</td>
<td>2018</td>
</tr>
</tbody>
</table>
4.3.2. Aproximación de la degradación de las tierras por procesos biológicos.

En una base de datos cartográfica (Base de recursos) se almacenaron las capas espaciales de información secundaria (tabla 9) con el objeto de realizar los geoprocesamientos necesarios para generar las unidades de degradación de las tierras en el área piloto. Para el desarrollo del presente capítulo, se utilizaron las capas espaciales de ecosistemas y el Modelo Digital de Elevación – DEM 30m con el objeto de componer una capa espacial que permita representar la zonificación de la transformación del bioma por medio de geoprocesamientos, la cual representa una aproximación del proceso de degradación biológico.

Dichos geoprocesamientos se basan en la siguiente propuesta metodológica (figura 24), socializada y puesta en debate ante una mesa técnica (anexo 3, lista de asistentes y acta del taller) y ante funcionarios del IDEAM (anexo 6, lista de asistentes), para ser desarrollada en el área piloto.

Figura 24. Esquema conceptual para la aproximación de la degradación biológica.

El desarrollo de los geoprocesamientos se realizó bajo el software ArcGIS 10.4. Dichos geoprocesamientos se describen a continuación por pasos cartográficos.

4.3.2.1. Paso cartográfico 1 (Generación de Cuencas Hidrográficas).

Con base en el Modelo Digital de Elevación – DEM 30 metros, se procedió a generar la delimitación de las cuencas hidrográficas en el municipio de San Juan Nepomuceno (Bolívar).

Como primer paso, es necesario realizar una depuración de relleno de sumideros o de remoción de picos en celdas del DEM insumo. La herramienta “Fill” permite iterar hasta que se rellenan todos los sumideros dentro del límite z especificado o remover los picos con una elevación mayor de la esperada según la tendencia de la superficie circundante. De esta manera se generó una capa espacial de superficie formato raster.

Como segundo paso, es necesario determinar la dirección del flujo siendo ésta una característica hidrológica de una superficie. Esto se llevó a cabo con la herramienta “Flow Direction” la cual toma una superficie como entrada y proporciona como salida un raster
que muestra la dirección del flujo que sale de cada celda. La dirección de flujo está determinada por la dirección del descenso más empinado, o la caída máxima, desde cada celda.

Como tercer paso, es necesario determinar la acumulación del flujo. Esto se llevó a cabo con la herramienta “Flow Accumulation” la cual calcula el flujo acumulado como el peso acumulado de todas las celdas que fluyen en cada celda de pendiente descendente en el raster de salida. Las celdas con una acumulación de flujo alta son áreas de flujo concentrado y pueden ser útiles para identificar canales de arroyos. Las celdas con una acumulación de flujo de 0 son alturas topográficas locales y se pueden utilizar para identificar crestas.

Como cuarto paso, se definió la red de flujo o red de drenajes bajo la herramienta “Raster Calculator”, para esto es necesario definir un condicional que permita indicar la cantidad de afluentes en la red de drenajes. Si se selecciona un valor bajo del umbral significa que obtendremos afluentes pequeños en nuestra red de drenajes (micro cuencas posteriormente), mientras que, un valor alto del umbral modela los drenajes de mayor tamaño (cuencas más grandes). Para éste caso se definió el umbral en “2500” píxeles de acumulación. Por lo tanto en la calculadora raster se escribió la expresión: stream_Red = Con("FlowA_dem_sjn" > 2500),1).

Como quinto paso y obtenida la red de drenajes, se procedió a dividir el cauce en segmentos no interrumpidos. Para esto se utilizó la herramienta “Stream Link”.

Como sexto paso, es necesario asignar un orden numérico a los segmentos del raster que representan las ramas de la red de drenajes. Esto se llevó a cabo con la herramienta “Stream Order” la cual crea un raster del orden de las corrientes. Para ello se usó el método Strahler, en donde el orden de la corriente se incrementa cuando se cruzan dos drenajes del mismo orden. Dos drenajes de diferentes órdenes no se traducirá en un aumento del orden de la siguiente corriente.

Como séptimo paso y obtenido el orden numérico de la red de drenajes, se procedió a crear un shape de drenajes. Para esto se utilizó la herramienta “Stream To Feature” la cual convierte un raster que representa una red lineal a entidades que representan la red lineal.

Como octavo paso y con el shape de drenajes, se procedió a determinar los puntos donde se cortan cada uno de los drenajes, para este caso se determinaron los puntos finales que es donde hay acumulación de flujo y es el punto importante para determinar las cuencas. Para ello se utilizó la herramienta “Feature Vertices To Point” la cual crea una clase de entidad que contiene puntos generados a partir de vértices especificados de las entidades de entrada.

Como noveno paso se delinearon las cuencas hidrográficas dentro del municipio San Juan Nepomuceno con base en los puntos finales de la red de drenajes. Para esto se utilizó la herramienta “Watershed Delineation” obteniendo la delimitación de las cuencas en formato raster.
Como último paso se procedió a convertir las cuencas de formato raster a formato vectorial, bajo la herramienta “Raster To Polygon”, arrojando como resultado el mapa de cuencas hidrográficas en el municipio de San Juan Nepomuceno (mapa 22).
Evaluación de la degradación de las tierras a nivel local – San Juan Nepomuceno (Bolívar)

Mapa 22. Mapa de Cuencas Hidrográficas en el área piloto.
4.3.2.2. Paso cartográfico 2 (Extracción de las unidades de biomas).

Se extrajeron los polígonos de la capa espacial de ecosistemas a una nueva capa espacial a partir del área piloto utilizando la herramienta “Clip”. Posteriormente se creó una nueva capa espacial (Biomas) mediante la fusión de polígonos adyacentes con el mismo valor de bioma y de transformación, utilizando la herramienta “Dissolve”. El mapa 23 representa la distribución de biomas, mientras que el mapa 24 representa la extensión de transformación y naturalidad de los biomas en el área piloto.

4.3.2.3. Paso cartográfico 3 (Calificación del grado de transformación del bioma).

Con las capas espaciales Cuencas Hidrográficas y Biomas, se procedió a unirlas para generar una capa espacial que cuente con los tres atributos, cuenca hidrográfica, bioma y extensión de transformación.

Por lo anterior se procedió a realizar una unión geométrica entre las capas espaciales Cuencas Hidrográficas y Biomas, en donde las geometrías y sus atributos se escriben en una capa espacial de salida. La herramienta que se utilizó fue “Union”.

Con la capa espacial resultante de la unión geométrica, se procedió a determinar la clasificación del grado de transformación del bioma (tabla 10), en donde se describe el porcentaje del índice de naturalidad de la unidad del bioma por cuenca hidrográfica.

<table>
<thead>
<tr>
<th>Grado de transformación del bioma</th>
<th>Índice de Naturalidad (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sin evidencia</td>
<td>> 70</td>
</tr>
<tr>
<td>Leve</td>
<td>50-70</td>
</tr>
<tr>
<td>Moderado</td>
<td>30-50</td>
</tr>
<tr>
<td>Fuerte</td>
<td>10-30</td>
</tr>
<tr>
<td>Extremo</td>
<td><= 10</td>
</tr>
</tbody>
</table>

Para obtener el porcentaje del índice de naturalidad de la unidad del bioma por cuenca hidrográfica, fue necesario realizar una calificación de las unidades del grado de transformación del bioma. La calificación se calculó con el porcentaje de naturalidad (porcentaje del área natural / área del bioma en una cuenca hidrográfica), ejemplo:

Cuénca hidrográfica = Arroyo Grande
Bioma = Zonobioma Semiárido Tropical
Extensión transformado = 24.788,4 Ha
Extensión natural = 2.291,1 Ha
Extensión total del bioma Zonobioma Semiárido Tropical; en la cuenca hidrográfica Arroyo Grande = 27.079,5 Ha

El cálculo de la calificación es el siguiente:

\[(2.291,1 \text{ Ha} / 27.079,5 \text{ Ha}) \times 100 = 8,5\% \text{ de índice de naturalidad},\]
Mapa 23. Mapa de Biomas en el área piloto.
Mapa 24. Mapa de transformación de los biomas en el área piloto.
Por lo tanto la calificación resultante es 8,5%; clasificándolo en el grado de transformación del bioma “Extremo”. Al arrojar un índice de naturalidad de 8,5%, éste se clasifica como valor menor al 10%, dando como resultado un grado extremo.

Siendo así, se clasifica toda la unidad del bioma (Zonobioma Semiárido Tropical) de la cuenca hidrográfica del Arroyo Grande como “Extremo”.

Teniendo en cuenta el anterior ejemplo, se procedió a calificar y clasificar todas las unidades de biomas por cuenca hidrográfica, tal como se describe en la tabla 11.

<table>
<thead>
<tr>
<th>Bioma</th>
<th>Cuenca Hidrográfica</th>
<th>Natural</th>
<th>Transformado</th>
<th>Total general</th>
<th>Porcentaje</th>
<th>Grado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arroyo Grande</td>
<td></td>
<td>3.072,8</td>
<td>30.374,3</td>
<td>33.447,2</td>
<td>-</td>
<td>Extremo</td>
</tr>
<tr>
<td>Helobioma</td>
<td></td>
<td>685,4</td>
<td>685,4</td>
<td>-</td>
<td>100,0</td>
<td>Sin evidencia</td>
</tr>
<tr>
<td>Zonobioma Semiárido Tropical</td>
<td></td>
<td>2.291,1</td>
<td>24.788,4</td>
<td>27.079,5</td>
<td>8,5</td>
<td>Extremo</td>
</tr>
<tr>
<td>Zonobioma Semihúmedo Tropical</td>
<td></td>
<td>522,7</td>
<td>4.900,5</td>
<td>5.423,2</td>
<td>9,6</td>
<td>Extremo</td>
</tr>
<tr>
<td>Arroyo El Uvito</td>
<td></td>
<td>36,4</td>
<td>1.777,4</td>
<td>1.813,8</td>
<td>-</td>
<td>Extremo</td>
</tr>
<tr>
<td>Helobioma</td>
<td></td>
<td>0,4</td>
<td>0,4</td>
<td>-</td>
<td>100,0</td>
<td>Sin evidencia</td>
</tr>
<tr>
<td>Zonobioma Semiárido Tropical</td>
<td></td>
<td>26,5</td>
<td>26,5</td>
<td>-</td>
<td>100,0</td>
<td>Sin evidencia</td>
</tr>
<tr>
<td>Arroyo El Guamo</td>
<td></td>
<td>10,0</td>
<td>1.777,0</td>
<td>1.786,9</td>
<td>0,6</td>
<td>Extremo</td>
</tr>
<tr>
<td>Zonobioma Semiárido Tropical</td>
<td></td>
<td>22,8</td>
<td>2.037,3</td>
<td>2.060,0</td>
<td>-</td>
<td>Extremo</td>
</tr>
<tr>
<td>Arroyo Viejo</td>
<td></td>
<td>39,0</td>
<td>39,0</td>
<td>-</td>
<td>100,0</td>
<td>Sin evidencia</td>
</tr>
<tr>
<td>Arroyo Gallinazo</td>
<td></td>
<td>38,8</td>
<td>38,8</td>
<td>-</td>
<td>100,0</td>
<td>Sin evidencia</td>
</tr>
<tr>
<td>Arroyo de La Biche (Arroyo Carreto)</td>
<td></td>
<td>407,5</td>
<td>7.164,1</td>
<td>7.571,6</td>
<td>-</td>
<td>Extremo</td>
</tr>
<tr>
<td>Zonobioma Semiárido Tropical</td>
<td></td>
<td>407,5</td>
<td>6.511,1</td>
<td>6.918,5</td>
<td>5,9</td>
<td>Extremo</td>
</tr>
<tr>
<td>Zonobioma Semihúmedo Tropical</td>
<td></td>
<td>653,0</td>
<td>653,0</td>
<td>-</td>
<td>100,0</td>
<td>Sin evidencia</td>
</tr>
<tr>
<td>Arroyo El Toro</td>
<td></td>
<td>240,4</td>
<td>7.625,3</td>
<td>7.865,7</td>
<td>-</td>
<td>Extremo</td>
</tr>
<tr>
<td>Zonobioma Semiárido Tropical</td>
<td></td>
<td>46,3</td>
<td>2.894,4</td>
<td>2.940,7</td>
<td>1,6</td>
<td>Extremo</td>
</tr>
<tr>
<td>Zonobioma Semihúmedo Tropical</td>
<td></td>
<td>194,1</td>
<td>4.730,9</td>
<td>4.925,0</td>
<td>3,9</td>
<td>Extremo</td>
</tr>
<tr>
<td>Arroyo Hondo</td>
<td></td>
<td>215,1</td>
<td>1.110,9</td>
<td>1.326,0</td>
<td>16,2</td>
<td>Fuerte</td>
</tr>
<tr>
<td>Zonobioma Semihúmedo Tropical</td>
<td></td>
<td>215,1</td>
<td>1.110,9</td>
<td>1.326,0</td>
<td>16,2</td>
<td>Fuerte</td>
</tr>
<tr>
<td>Arroyo Corral</td>
<td></td>
<td>1.907,3</td>
<td>7.386,6</td>
<td>9.293,9</td>
<td>-</td>
<td>Extremo</td>
</tr>
<tr>
<td>Helobioma</td>
<td></td>
<td>197,9</td>
<td>197,9</td>
<td>-</td>
<td>100,0</td>
<td>Sin evidencia</td>
</tr>
<tr>
<td>Zonobioma Semihúmedo Tropical</td>
<td></td>
<td>1.907,3</td>
<td>7.188,7</td>
<td>9.096,0</td>
<td>21,0</td>
<td>Fuerte</td>
</tr>
<tr>
<td>Total general</td>
<td></td>
<td>5.902,3</td>
<td>57.553,7</td>
<td>63.455,9</td>
<td>-</td>
<td>Fuerte</td>
</tr>
</tbody>
</table>

Con la matriz de calificación del grado de transformación del bioma (tabla 11), se generó un nuevo atributo (grado de transformación del bioma) en la capa espacial resultante de la unión geométrica, con el objeto de calcular el dato de grado de transformación del bioma a partir de una unión entre la matriz de calificación y la capa espacial. Para esto se utilizó la herramienta “Join” y la herramienta “Field Calculator”.

Posteriormente se creó una nueva capa espacial (Transformación del bioma) mediante la fusión de polígonos adyacente con el mismo valor de grado de transformación del bioma, utilizando la herramienta “Dissolve”. A esta capa resultante, se le realizó una depuración cartográfica por área mínima de 2 hectáreas, teniendo en cuenta que la escala de trabajo es 1:25.000 lo cual representa 0,5 cm². Para esto se utilizó gradualmente la herramienta “Eliminate”.
4.3.2.4. Paso cartográfico 4 (Unión con las clases de uso del suelo).

Con base en el resultado del anterior paso (Transformación del bioma) más el resultado de los sistemas de uso de la tierra (clase de uso), se procedió a realizar una unión geométrica entre las capas anteriormente mencionadas, en donde las geometrías y sus atributos se escriben en una capa espacial de salida. La herramienta que se utilizó fue “Union”.

Con la capa espacial resultante de la unión geométrica, se procedió a revisar y re-calificar las clases de uso de las tierras, natural, área protegida y zonas acuáticas; como sin evidencia. Para esto se utilizó la herramienta “Select By Attributes” y posteriormente “Field Calculator”. El mapa 25 representa la clasificación del grado de transformación del bioma.
Mapa 25. Mapa de degradación biológica por transformación del bioma en el área piloto.
4.3.3. Generación del mapa de degradación de las tierras bajo información nacional.

Con los mapas de degradación física por erosión y degradación química por salinización (información nacional por el IDEAM) más el mapa de degradación biológica por transformación del bioma (fuente SD-MST en Colombia), se procedió a elaborar el mapa de degradación de las tierras bajo información nacional en el área piloto.

Para generar la capa espacial que representa el mapa de degradación de las tierras, fue necesario realizar algunos geoprocesamientos bajo el software ArcGIS 10.4. Dichos geoprocesamientos se describen a continuación por pasos cartográficos.

4.3.3.1. Paso cartográfico 1 (Unión de los tres procesos de degradación).

Con las capas espaciales de los 3 procesos de degradación, se procedió a realizar una unión con el objeto de generar una sola capa espacial que cuente con los atributos, proceso de degradación, su tipo, su clase y su grado de degradación.

Por lo anterior se procedió a realizar una unión geométrica entre las capas espaciales degradación de suelos por erosión, degradación de suelos por salinización y degradación biológica, en donde las geometrías y sus atributos se escriben en una capa espacial de salida. La herramienta que se utilizó fue “Union”.

Luego de unidas las capas espaciales se creó una capa espacial nueva que contiene entidades de parte simple generadas al separar entidades multipart de entrada. La herramienta que se utilizó fue “Multipart To Singlepart”

A esta capa resultante, se le realizó una depuración cartográfica por área mínima de 2 hectáreas, teniendo en cuenta que la escala de trabajo es 1:25.000 lo cual representa 0,5 cm². Para esto se utilizó gradualmente la herramienta “Eliminate”.

4.3.3.2. Paso cartográfico 2 (Fusión en la capa de SUT).

Con base en la capa espacial de SUT, se creó una nueva capa espacial mediante la fusión de polígonos adyacente con el mismo valor de clase de uso de la tierra, tipo de uso de la tierra, sistema de uso de tierra, vereda, corregimiento y frontera agrícola, utilizando la herramienta “Dissolve”.

4.3.3.3. Paso cartográfico 3 (Unión de los SUT y la degradación).

Con las capas espaciales de SUT generada en el paso cartográfico 2 y la capa espacial de degradación de las tierras generada en el paso cartográfico 1, se procedió a realizar una unión, en donde las geometrías y sus atributos se escriben en una capa espacial de salida. La herramienta que se utilizó fue “Union”. La tabla 12 representa los atributos de la nueva capa de salida.

<table>
<thead>
<tr>
<th>Clase de Uso</th>
<th>Tipo de Uso</th>
</tr>
</thead>
</table>

Tabla 12. Atributos de la capa de degradación de las tierras bajo información nacional.
Con esta capa se logró representar los grados de degradación física (mapa 26), identificando los usos de las tierras presentes en la misma, como también los grados de degradación química (mapa 27) y biológica (mapa 28) en el área piloto.

Se aclara que para el caso del mapa de degradación química bajo estudios nacionales, se le realizó un ajuste a la calificación en zonas con pendientes de 25% a 50% (e) pasándolas de grado moderado a grado leve, dentro del área piloto a nivel local (San Juan Nepomuceno). Interpretando lo anterior como zonas o terrenos fuertemente quebrados en donde las sales normalmente presentarían un transporte debido a la escorrentía.
Mapa 26. Mapa de degradación física por erosión, bajo información nacional.
Mapa 27. Mapa de degradación química por salinización, bajo información nacional.
Mapa 28. Mapa de degradación biológica por transformación del bioma, bajo información nacional.
4.3.4. Generación del mapa de degradación de las tierras bajo MapQuest, cuestionario (Q3).

Dentro de la dinámica del taller de expertos y como se describió en el capítulo 4.2.4.2., con la aplicación del cuestionario (Q2), se procedió a continuar con el paso 3 de la herramienta de mapeo por cuestionarios (MapQuest) bajo la metodología WOCAT/LADA.

Con el objeto de identificar los indicadores de estado, presión e impacto de la degradación de las tierras por cada SUT, se diligenciaron los cuestionarios Q3 (figura 25) por cada SUT manteniendo las mismas mesas de trabajo que aportaron al ajuste y validación de los SUT (fotografía 4). El anexo 5 recopila los cuestionarios (Q3) diligenciados en el taller de expertos.

<table>
<thead>
<tr>
<th>Unidad de Mapeo ID: 113 (= Distrito Lysenburg + LUS: Pastizales)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sistema/Clasificación de Uso de la Tierra (paso 2)</td>
</tr>
<tr>
<td>a) Unidad Administrativa</td>
</tr>
<tr>
<td>Degradación de la tierra (paso 3)</td>
</tr>
<tr>
<td>i) Tipo (estado)</td>
</tr>
<tr>
<td>Distrito</td>
</tr>
<tr>
<td>Pastizales</td>
</tr>
</tbody>
</table>

Figura 25. Cuestionario (Q3). Paso 3, degradación de las tierras por cada SUT (MapQuest).
A continuación se describe la manera de indicar los principales tipos de degradación de la tierra, la extensión actual de los tipos identificados de degradación de tierras, el grado actual (cualitativo) de degradación de la tierra para los tipos, la tasa estimada de la degradación de la tierra sobre los últimos 10 años, el impacto estimado sobre los Servicios del Ecosistema (ESS) para los tipos, las causas directas (biofísicas) de la degradación de la tierra y las causas indirectas (socioeconómicas) de la degradación de la tierra:

a) Tipos de degradación de la tierra (Indicadores de Estado)

O: Sin degradación

W: Erosión hídrica
Wt: Pérdida de las capas superficiales del suelo / erosión de la superficie
Wg: Erosión por cárcavas / barrancos
Wm: Movimientos de masas
Wr: Erosión en los bancos de ríos (terrazas fluviales)
Wc: Erosión costera
Wo: Efectos de la degradación fuera del sitio

E: Erosión eólica
Et: Pérdida de las capas superiores del suelo
Ed: Deflación y deposición
Eo: Efectos de la degradación fuera del sitio

C: Deterioro químico del suelo
Cn: Disminución de la fertilidad y reducción del contenido de materia orgánica
Ca: Acidificación
Cp: Contaminación del suelo
Cs: Salinización / alcalinización

P: Deterioro físico del suelo
Pc: Compactación
Pk: Impermeabilización / Encostramiento
Pw: Anegamientos
Ps: Hundimiento de los suelos orgánicos, decantación de los suelos
Evaluación de la degradación de las tierras a nivel local – San Juan Nepomuceno (Bolívar)

Pu: Pérdida de las funciones bio-productivas debido a otras actividades

B: Degradación biológica
Bc: Variación de la cobertura vegetal
Bh: Pérdida de hábitats
Bq: Cantidad / disminución de la biomasa
Bf: Efectos perjudiciales del fuego
Bs: Calidad y composición de las especies / disminución de la diversidad
Bl: Pérdida de la vida del suelo
Bp: Incremento de las pestes / enfermedades, pérdida de los predadores

H: Degradación del agua
Ha: Aridificación
Hs: Cambio en la cantidad de las superficies de agua
Hg: Cambio en las aguas subterráneas / niveles de los acuíferos
Hp: Reducción de la calidad superficial del agua
Hq: Disminución de la calidad de las aguas subterráneas
Hw: Reducción de la capacidad de captación/retención de los humedales

b) Extensión del tipo de degradación porcentaje de la unidad de mapeo (Indicador de estado)

Para cada tipo identificado de degradación de la tierra, la extensión debe ser dada como un porcentaje del SUT afectado por ese tipo de degradación dentro de la unidad administrativa seleccionada.

c) Grado de la degradación de la tierra (Indicador de estado)

1 Leve
2 Moderado
3 Fuerte
4 Extrema

d) Tasa de degradación (Indicador de estado)

3: incremento rápido de la degradación
2: incremento moderado de la degradación
1: incremento lento de la degradación
0: no hay cambios en la degradación
-1: disminución lenta de la degradación
-2: disminución moderada de la degradación
-3: disminución rápida de la degradación

e) Causas directas de la degradación de la tierra (Indicadores de presión directos)

s: Manejo del suelo
(s1) Prácticas inapropiadas en el manejo del suelo
(s2) Realización de cultivos en suelos no aptos
c: Manejo del cultivo
(c1) falta o insuficiencia del mantenimiento de las medidas de conservación
(c2) reducción del período de barbecho en la rotación de cultivos,
(c3) irrigación inapropiada,
(c4) aplicación inapropiada de fertilizantes / abonos,
(c5) maquinaria pesada,
(c6) nutrientes minerales,
(c7) aradas,
(c8) otros

f: Deforestación y remoción de la vegetación natural
(f1) forestación comercial a gran escala,
(f2) desarrollo urbano,
(f3) incendios forestales,
(f4) conversión a otros usos de la tierra (especificar el uso)
(f5) construcción de caminos,
(f6) otros. La deforestación es usualmente seguida por otras actividades que pueden causar una mayor degradación.

e: Sobreexplotación de la vegetación por uso doméstico
(e1) extracción excesiva para otros usos (leña para combustible, madera (local), vallados de materiales),
(e2) remoción de forrajes,
(e3) otros.

g: Sobrepastoreo
(g1) número excesivo de cabezas de ganado,
(g2) pisoteo de animales a lo largo de los caminos,
(g3) otros.

i: Actividades industriales y minería
(i1) liberación de los contaminantes transportados por el aire,
(i2) mineral,
(i3) deposición de residuos,
(i4) otros.

u: Desarrollo urbanístico e infraestructura
(u1) asentamientos y caminos,
(u2) recreación (urbana),
(u3) otros.

p: Descargas
(p1) descarga de efluentes,
(p2) aguas residuales,
(p3) saneamiento impropio,
(p4) otros.

q: Causas
(q1) aplicación excesiva de fertilizantes, pesticidas,
Evaluación de la degradación de las tierras a nivel local – San Juan Nepomuceno (Bolívar)

(q2) lavado / lixiviación de los contaminantes de la tierra (por ej. sedimentación, nutrientes, químicos),
(q3) otros.

w: Alteración de los ciclos hidrológicos
(w1) tasas de infiltración bajas / aumento de las superficies con escorrentías,
(w2) otros.

o: Sobrecaptación del agua
(o1) crecimiento de la demanda de riego (irrigación),
(o2) disminución del uso eficiente del agua,
(o3) otros.

n: Causas naturales
(n1) topografía / relieves extremos
(n2) lluvias excesivas,
(n3) tormentas,
(n4) inundaciones,
(n5) sequías,
(n6) derrumbes naturales en las áreas montañosas altas,
(n7) cambio en los patrones de lluvias y/o de temperaturas (cambio climático)
(n8) suelos altamente susceptibles,
(n9) otros (vientos).

f) Causas indirectas de la degradación de la tierra (conductores indirectos)

p: Presión poblacional

h: Pobreza / riqueza

l: Disponibilidad de trabajo

r: Insumos e Infraestructura

e: Educación, acceso al conocimiento y servicios de apoyo

w: Conflictos y guerras

g: Gobernanza / Institucionalidad

o: Otros (especificar)

g) Impacto sobre los servicios del ecosistema (Indicadores de impacto)

Tipo de impacto

P Servicios Productivos
(P1) producción (de animales / plantas incluyendo la cantidad y calidad de biomasa para energía) y riesgo productivo,
(P2) agua (cantidad y calidad) para el consumo humano, animal y vegetal,
(P3) disponibilidad de tierras.

E Servicios Ecológicos (regulación / soporte)
(E1) ciclo del agua / régimen hidrológico (sequías, inundaciones, flujo de las estaciones secas),
(E2) situación de la materia orgánica,
(E3) cobertura del suelo (vegetación, mantillos, etc.),
(E4) estructura del suelo: superficies (por ej. selladas y con costras) y subsuelos que afectan la infiltración, la capacidad de captación de los nutrientes, la salinidad, etc.,
(E5) ciclo de los nutrientes (N, P, K) y ciclo del carbón (C),
(E6) formación del suelo (incluyendo la deposición de suelo por viento),
(E7) biodiversidad,
(E8) aumento de las emisiones de los gases de efecto invernadero.

S Servicios Socio-culturales y bienestar humano
(S1) paisajes espirituales, estéticos, culturales y patrimonios valorados, recreación y turismo,
(S2) educación y conocimiento (incluyendo el conocimiento indígena)
(S3) conflictos,
(S4) seguridad alimentaria, salud y pobreza,
(S5) ingresos netos,
(S6) infraestructura pública y privada (edificios, caminos, embalses, etc.).

Nivel de impacto:

-3 impacto negativo alto
-2 impacto negativo
-1 impacto negativo bajo
1 impacto positivo bajo
2 impacto positivo
3 impacto positivo alto

En caso de querer profundizar más en la herramienta de mapeo “Un cuestionario para posibilitar la realización de Mapas de la Degradación de la Tierra y el Desarrollo de Mecanismos para el Manejo Sostenible de la Tierra” visitar la página de internet https://www.wocat.net/library/media/18/, en la cual se puede descargar el manual en diferentes idiomas.

Diligenciados los cuestionarios Q3 por cada SUT, se procedió a recopilar los datos que arrojan los indicadores de estado (tipo y grado de la degradación), presión (causas de la degradación) e impacto (impacto sobre los servicios ecosistémicos). Tal como se describe en la tabla 13.
Tabla 13. Recopilación de los cuestionarios Q3 (MapQuest).

<table>
<thead>
<tr>
<th>Clase de Uso</th>
<th>Zona Climática</th>
<th>Terreno</th>
<th>Tipo</th>
<th>Extensión (%)</th>
<th>Grado</th>
<th>Tasa</th>
<th>Causas Directas</th>
<th>Causas Indirectas</th>
<th>Impacto SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agroforestal</td>
<td>Cálido semihúmedo</td>
<td>Quebrado</td>
<td>Wt</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>c1, c2</td>
<td>e</td>
<td>E3, E7 (-1)</td>
</tr>
<tr>
<td>Agroforestal</td>
<td>Cálido semihúmedo</td>
<td>Quebrado</td>
<td>Cp</td>
<td>12</td>
<td>1</td>
<td>1</td>
<td>c4</td>
<td>t, e</td>
<td>P3, E3, E5, E7 (-1)</td>
</tr>
<tr>
<td>Cultivos transitorios</td>
<td>Cálido semihúmedo</td>
<td>Quebrado</td>
<td>Wt</td>
<td>60</td>
<td>2</td>
<td>2</td>
<td>s1, s2, c2, n1</td>
<td>t, h, r, e</td>
<td>P1, E2, E3, E7, S4 (-2)</td>
</tr>
<tr>
<td>Cultivos transitorios</td>
<td>Cálido semihúmedo</td>
<td>Quebrado</td>
<td>Cn</td>
<td>60</td>
<td>2</td>
<td>2</td>
<td>s1, s2, c1, c2, n1</td>
<td>h, r, e</td>
<td>P1, E2, E3, E7, S4 (-2)</td>
</tr>
<tr>
<td>Cultivos transitorios</td>
<td>Cálido semihúmedo</td>
<td>Quebrado</td>
<td>Bf</td>
<td>60</td>
<td>2</td>
<td>2</td>
<td>s1, s2, c2</td>
<td>h, e</td>
<td>E2, E3, E7, E8 (-2)</td>
</tr>
<tr>
<td>Ganadería</td>
<td>Cálido semihúmedo</td>
<td>Ondulado a plano</td>
<td>Pc</td>
<td>30</td>
<td>2</td>
<td>1</td>
<td>s1, f6, g1</td>
<td>t, h, e, g</td>
<td>P1, S1 (-2), E3, E7, E8 (-3)</td>
</tr>
<tr>
<td>Ganadería</td>
<td>Cálido semihúmedo</td>
<td>Ondulado a plano</td>
<td>Cn</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>s1, f6, g1</td>
<td>t, h, e, g</td>
<td>P1, S1 (-2), E3, E7, E8 (-3)</td>
</tr>
<tr>
<td>Ganadería</td>
<td>Cálido semihúmedo</td>
<td>Ondulado a plano</td>
<td>Bh</td>
<td>90</td>
<td>3</td>
<td>1</td>
<td>s1, f4, g1, n1, n5</td>
<td>t, h, e, g</td>
<td>P1, E1, E7, S4 (-3)</td>
</tr>
<tr>
<td>Ganadería</td>
<td>Cálido semihúmedo</td>
<td>Quebrado</td>
<td>Pc</td>
<td>70</td>
<td>2</td>
<td>1</td>
<td>s1, f4, g1, n1, n5</td>
<td>t, h, e, g</td>
<td>P1, E4, E8, S3, S4 (-2)</td>
</tr>
<tr>
<td>Ganadería</td>
<td>Cálido semihúmedo</td>
<td>Quebrado</td>
<td>Cn</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>s1, f4, g1, n1, n5</td>
<td>t, h, e</td>
<td>P1, E2, E5, S4 (-2)</td>
</tr>
<tr>
<td>Ganadería</td>
<td>Cálido semihúmedo</td>
<td>Quebrado</td>
<td>Bh</td>
<td>90</td>
<td>3</td>
<td>1</td>
<td>s1, f4, g1, n1, n5</td>
<td>t, h, e, g</td>
<td>P1, E1, E7, S4 (-3)</td>
</tr>
<tr>
<td>Plantación forestal</td>
<td>Cálido semihúmedo</td>
<td>Ondulado a plano</td>
<td>Bh</td>
<td>60</td>
<td>2</td>
<td>2</td>
<td>s1, s2, c1, f1</td>
<td>g</td>
<td>E3, S4 (-2), E7, S1 (-3)</td>
</tr>
<tr>
<td>Plantación forestal</td>
<td>Cálido semihúmedo</td>
<td>Quebrado</td>
<td>Wt</td>
<td>30</td>
<td>2</td>
<td>2</td>
<td>s1, s2, c1, f1, f4, n1</td>
<td>g</td>
<td>E3, S4 (-2), E7 (-3)</td>
</tr>
<tr>
<td>Plantación forestal</td>
<td>Cálido semihúmedo</td>
<td>Quebrado</td>
<td>Bh</td>
<td>60</td>
<td>2</td>
<td>2</td>
<td>s1, s2, c1, f1</td>
<td>g</td>
<td>E3, S4 (-2), E7, S1 (-3)</td>
</tr>
<tr>
<td>Silvopastoril</td>
<td>Cálido semihúmedo</td>
<td>Ondulado a plano</td>
<td>Wo</td>
<td>15</td>
<td>1</td>
<td>1</td>
<td>s1, s3, c1, g1, g2</td>
<td>h, e</td>
<td>P3 (-1)</td>
</tr>
<tr>
<td>Silvopastoril</td>
<td>Cálido semihúmedo</td>
<td>Ondulado a plano</td>
<td>Wt</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>s1, c1, c7, f5</td>
<td>h, r, e</td>
<td>E3 (-1)</td>
</tr>
<tr>
<td>Silvopastoril</td>
<td>Cálido semihúmedo</td>
<td>Quebrado</td>
<td>Wt</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>s1, g2</td>
<td>r</td>
<td>P1, E3 (-1)</td>
</tr>
<tr>
<td>Silvopastoril</td>
<td>Cálido semihúmedo</td>
<td>Quebrado</td>
<td>Cp</td>
<td>15</td>
<td>1</td>
<td>1</td>
<td>s1</td>
<td>e</td>
<td>P1 (-1)</td>
</tr>
<tr>
<td>Silvopastoril</td>
<td>Cálido semihúmedo</td>
<td>Quebrado</td>
<td>Pc</td>
<td>10</td>
<td>1</td>
<td>2</td>
<td>g2</td>
<td>t</td>
<td>E4 (-1)</td>
</tr>
</tbody>
</table>
Evaluación de la degradación de las tierras a nivel local – San Juan Nepomuceno (Bolívar)

<table>
<thead>
<tr>
<th>Agroforestal</th>
<th>Cálido semiárido</th>
<th>Ondulado a plano</th>
<th>Bh</th>
<th>30</th>
<th>1</th>
<th>1 (f4, w1)</th>
<th>t</th>
<th>E7 (-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cultivos permanentes arbóreos</td>
<td>Cálido semiárido</td>
<td>Ondulado a plano</td>
<td>Bh</td>
<td>80</td>
<td>2</td>
<td>2 (s1, q1)</td>
<td>e, g</td>
<td>E7 (-1), S4 (-2)</td>
</tr>
<tr>
<td>Cultivos permanentes arbóreos</td>
<td>Cálido semiárido</td>
<td>Ondulado a plano</td>
<td>Pc</td>
<td>30</td>
<td>1</td>
<td>1 (s1, c5, q1)</td>
<td>r, e</td>
<td>P1, E4, E7 (-1)</td>
</tr>
<tr>
<td>Cultivos permanentes arbóreos</td>
<td>Cálido semiárido</td>
<td>Quebrado</td>
<td>Bh</td>
<td>80</td>
<td>2</td>
<td>2 (s1, q1)</td>
<td>e, g</td>
<td>E7 (-1), S4 (-2)</td>
</tr>
<tr>
<td>Cultivos transitorios</td>
<td>Cálido semiárido</td>
<td>Quebrado</td>
<td>Wt</td>
<td>60</td>
<td>2</td>
<td>2 (s1, s2, c2, n1)</td>
<td>t, h, r, e</td>
<td>P1, E2, E3, E7, S4 (-2)</td>
</tr>
<tr>
<td>Cultivos transitorios</td>
<td>Cálido semiárido</td>
<td>Quebrado</td>
<td>Cn</td>
<td>60</td>
<td>2</td>
<td>2 (s1, s2, c1, c2, n1)</td>
<td>h, r, e</td>
<td>P1, E2, E3, E7, S4 (-2)</td>
</tr>
<tr>
<td>Cultivos transitorios</td>
<td>Cálido semiárido</td>
<td>Quebrado</td>
<td>Bf</td>
<td>60</td>
<td>2</td>
<td>2 (s1, s2, c2)</td>
<td>h, e</td>
<td>E2, E3, E7, E8 (-2)</td>
</tr>
<tr>
<td>Ganadería</td>
<td>Cálido semiárido</td>
<td>Ondulado a plano</td>
<td>Cn</td>
<td>80</td>
<td>2</td>
<td>1 (s1, g1, w1)</td>
<td>e, g</td>
<td>P1, E2, E4, E7, S1 (-2)</td>
</tr>
<tr>
<td>Ganadería</td>
<td>Cálido semiárido</td>
<td>Ondulado a plano</td>
<td>Pc</td>
<td>80</td>
<td>2</td>
<td>1 (s1, g1, w1)</td>
<td>e, g</td>
<td>P1, E2, E4, E7, S1 (-2)</td>
</tr>
<tr>
<td>Ganadería</td>
<td>Cálido semiárido</td>
<td>Ondulado a plano</td>
<td>Bh</td>
<td>100</td>
<td>2</td>
<td>2 (s1, f4)</td>
<td>e, g</td>
<td>P1, E1, E3, E5, E7, S1 (-2)</td>
</tr>
<tr>
<td>Ganadería</td>
<td>Cálido semiárido</td>
<td>Quebrado</td>
<td>Pc</td>
<td>70</td>
<td>2</td>
<td>1 (s1, g1, w1)</td>
<td>e, g</td>
<td>P1, E2, E4, E7, S1 (-2)</td>
</tr>
<tr>
<td>Ganadería</td>
<td>Cálido semiárido</td>
<td>Quebrado</td>
<td>Cn</td>
<td>70</td>
<td>2</td>
<td>1 (s1, g1, w1)</td>
<td>e, g</td>
<td>P1, E2, E4, E7, S1 (-2)</td>
</tr>
<tr>
<td>Ganadería</td>
<td>Cálido semiárido</td>
<td>Quebrado</td>
<td>Bh</td>
<td>90</td>
<td>2</td>
<td>2 (s1, f4)</td>
<td>e, g</td>
<td>P1, E1, E3, E5, E7, S1 (-2)</td>
</tr>
<tr>
<td>Plantación forestal</td>
<td>Cálido semiárido</td>
<td>Ondulado a plano</td>
<td>Bh</td>
<td>60</td>
<td>2</td>
<td>2 (s1, s2, c1, f1)</td>
<td>g</td>
<td>E3, S4 (-2), E7, S1 (-3)</td>
</tr>
<tr>
<td>Plantación forestal</td>
<td>Cálido semiárido</td>
<td>Quebrado</td>
<td>Bh</td>
<td>90</td>
<td>2</td>
<td>2 (s1, f1)</td>
<td>e, g</td>
<td>P1, E7, S4 (-2)</td>
</tr>
<tr>
<td>Plantación forestal</td>
<td>Cálido semiárido</td>
<td>Quebrado</td>
<td>Bs</td>
<td>90</td>
<td>2</td>
<td>2 (s1, f1)</td>
<td>e, g</td>
<td>P1, E7, S4 (-2)</td>
</tr>
<tr>
<td>Silvopastoril</td>
<td>Cálido semiárido</td>
<td>Ondulado a plano</td>
<td>Cn</td>
<td>70</td>
<td>2</td>
<td>2 (s1, g1)</td>
<td>e</td>
<td>P1, E2, E7 (-2)</td>
</tr>
<tr>
<td>Silvopastoril</td>
<td>Cálido semiárido</td>
<td>Ondulado a plano</td>
<td>Pc</td>
<td>80</td>
<td>2</td>
<td>2 (s1, g1)</td>
<td>e, w</td>
<td>P1, E4, E7 (-2)</td>
</tr>
<tr>
<td>Silvopastoril</td>
<td>Cálido semiárido</td>
<td>Ondulado a plano</td>
<td>Bh</td>
<td>50</td>
<td>2</td>
<td>2 (g1)</td>
<td>e, w</td>
<td>P1, E7 (-1)</td>
</tr>
<tr>
<td>Silvopastoril</td>
<td>Cálido semiárido</td>
<td>Quebrado</td>
<td>Wt</td>
<td>70</td>
<td>2</td>
<td>2 (s1, g1)</td>
<td>e</td>
<td>P1, E2, E7 (-2)</td>
</tr>
<tr>
<td>Silvopastoril</td>
<td>Cálido semiárido</td>
<td>Quebrado</td>
<td>Cn</td>
<td>80</td>
<td>2</td>
<td>2 (s1, g1)</td>
<td>e</td>
<td>E7 (-1), P1, E2 (-2),</td>
</tr>
<tr>
<td>Silvopastoril</td>
<td>Cálido semiárido</td>
<td>Quebrado</td>
<td>Pc</td>
<td>70</td>
<td>2</td>
<td>2 (s1, g1)</td>
<td>e</td>
<td>E7 (-1), P1, E2 (-2),</td>
</tr>
</tbody>
</table>
Recopilados los cuestionarios, se procedió a zonificar el estado, la presión y los impactos. Para esto fue necesario sintetizar la tabla 13 bajo cada Uso de las tierras diferenciándolos por zona climática y tipo de pendiente (terreno). Ver tabla 14.

<table>
<thead>
<tr>
<th>Clase de Uso</th>
<th>Zona Climática</th>
<th>Terreno</th>
<th>Tipo</th>
<th>Extensión (%)</th>
<th>Grado</th>
<th>Tasa</th>
<th>Causas Directas</th>
<th>Causas Indirectas</th>
<th>Impacto SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agroforestal</td>
<td>Cálido semiárido</td>
<td>Quebrado</td>
<td>Wt, Cp</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>c1, c2, c4</td>
<td>t, e</td>
<td>P3, E3, E5, E7 (-1)</td>
</tr>
<tr>
<td>Cultivos transitorios</td>
<td>Cálido semiárido</td>
<td>Quebrado</td>
<td>Wt, Cn, Bh</td>
<td>60</td>
<td>2</td>
<td>2</td>
<td>s1, s2, c1, c2, n1</td>
<td>t, h, r, e</td>
<td>P1, E2, E3, E7, E8, S4 (-2)</td>
</tr>
<tr>
<td>Ganadería</td>
<td>Cálido semiárido</td>
<td>Ondulado a plano</td>
<td>Cn, Pc, Bh</td>
<td>90</td>
<td>3</td>
<td>1</td>
<td>s1, f1, g1, n1, n5</td>
<td>t, h, e, g</td>
<td>S1 (-2), P1, E1, E3, E7, E8, S4 (-3)</td>
</tr>
<tr>
<td>Ganadería</td>
<td>Cálido semiárido</td>
<td>Quebrado</td>
<td>Cn, Pc, Bh</td>
<td>90</td>
<td>3</td>
<td>1</td>
<td>s1, f1, g1, n1, n5</td>
<td>t, h, e, g</td>
<td>E2, E4, E5, E8, S3 (-2), P1, E1, E7, S4 (-3)</td>
</tr>
<tr>
<td>Plantación forestal</td>
<td>Cálido semiárido</td>
<td>Ondulado a plano</td>
<td>Bh</td>
<td>60</td>
<td>2</td>
<td>2</td>
<td>s1, s2, c1, f1</td>
<td>g</td>
<td>E3, S4 (-2), E7, S1 (-3)</td>
</tr>
<tr>
<td>Plantación forestal</td>
<td>Cálido semiárido</td>
<td>Quebrado</td>
<td>Wt, Bh</td>
<td>60</td>
<td>2</td>
<td>2</td>
<td>s1, s2, c1, f1, f2, n3</td>
<td>g</td>
<td>E3, S4 (-2), E7, S1 (-3)</td>
</tr>
<tr>
<td>Silvopastoral</td>
<td>Cálido semiárido</td>
<td>Ondulado a plano</td>
<td>Wt, Wo</td>
<td>15</td>
<td>1</td>
<td>1</td>
<td>s1, s3, c1, c7, f5, g1, g2, r1</td>
<td>h, r, e</td>
<td>P3, E3 (-1)</td>
</tr>
<tr>
<td>Silvopastoral</td>
<td>Cálido semiárido</td>
<td>Quebrado</td>
<td>Wt, Cp, Pc</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>s1, g2</td>
<td>t, r, e</td>
<td>P1, E3, E4 (-1)</td>
</tr>
<tr>
<td>Agroforestal</td>
<td>Cálido semiárido</td>
<td>Ondulado a plano</td>
<td>Bh</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>f4, w1</td>
<td>t</td>
<td>E7 (-1)</td>
</tr>
<tr>
<td>Cultivos permanentes arboresos</td>
<td>Cálido semiárido</td>
<td>Ondulado a plano</td>
<td>Pc, Bh</td>
<td>80</td>
<td>2</td>
<td>2</td>
<td>s1, c5, q1</td>
<td>r, e, g</td>
<td>P1, E4, E7 (-1), S4 (-2)</td>
</tr>
<tr>
<td>Cultivos permanentes arboresos</td>
<td>Cálido semiárido</td>
<td>Quebrado</td>
<td>Bh</td>
<td>80</td>
<td>2</td>
<td>2</td>
<td>s1, q1</td>
<td>e, g</td>
<td>E7 (-1), S4 (-2)</td>
</tr>
<tr>
<td>Cultivos transitorios</td>
<td>Cálido semiárido</td>
<td>Quebrado</td>
<td>Wt, Cn, Bh</td>
<td>60</td>
<td>2</td>
<td>2</td>
<td>s1, s2, c1, c2, n3</td>
<td>t, h, r, e</td>
<td>P1, E2, E3, E7, E8, S4 (-2)</td>
</tr>
<tr>
<td>Ganadería</td>
<td>Cálido semiárido</td>
<td>Ondulado a plano</td>
<td>Cn, Pc, Bh</td>
<td>80</td>
<td>2</td>
<td>2</td>
<td>s1, g1, f1, c7, n5</td>
<td>e, g</td>
<td>P1, E1, E2, E3, E4, E5, E7, S1 (-2)</td>
</tr>
<tr>
<td>Ganadería</td>
<td>Cálido semiárido</td>
<td>Quebrado</td>
<td>Cn, Pc, Bh</td>
<td>70</td>
<td>2</td>
<td>2</td>
<td>s1, f1, g1, q1</td>
<td>e, g</td>
<td>P1, E1, E2, E3, E4, E5, E7, S1 (-2)</td>
</tr>
<tr>
<td>Plantación forestal</td>
<td>Cálido semiárido</td>
<td>Ondulado a plano</td>
<td>Bh</td>
<td>60</td>
<td>2</td>
<td>2</td>
<td>s1, s2, c1, f1</td>
<td>g</td>
<td>E3, S4 (-2), E7, S1 (-3)</td>
</tr>
<tr>
<td>Plantación forestal</td>
<td>Cálido semiárido</td>
<td>Quebrado</td>
<td>Bh, Bs</td>
<td>90</td>
<td>2</td>
<td>2</td>
<td>s1, f1</td>
<td>e, g</td>
<td>P1, E7, S4 (-2)</td>
</tr>
<tr>
<td>Silvopastoral</td>
<td>Cálido semiárido</td>
<td>Ondulado a plano</td>
<td>Cn, Pc, Bh</td>
<td>70</td>
<td>2</td>
<td>2</td>
<td>s1, g1</td>
<td>e, w</td>
<td>P1, E2, E4, E7 (-2)</td>
</tr>
<tr>
<td>Silvopastoral</td>
<td>Cálido semiárido</td>
<td>Quebrado</td>
<td>Wt, Cn, Pc</td>
<td>70</td>
<td>2</td>
<td>2</td>
<td>s1, g1</td>
<td>e</td>
<td>P1, E2, E7 (-2)</td>
</tr>
</tbody>
</table>

Con la tabla 14 elaborada, se procedió a zonificar el estado de la degradación bajo la herramienta de mapeo por cuestionarios representando el tipo de degradación (mapa 29) como el grado de la misma (mapa 30). Esta zonificación permite identificar los SUT involucrados en dicha degradación.

En el taller de expertos se realizó una jornada de práctica en campo, la cual fue funcional para identificar por parte de los participantes algunos patrones de degradación de tierras que anteriormente los asociaban como características normales de las tierras. Concluyendo con la necesidad de re-calificar el grado de la ganadería en clima cálido semiárido, tanto ondulado a plano como quebrado, de grado 2 (Moderado) a grado 3 (Fuerte).

Adicionalmente se elaboró la zonificación de la presión de la degradación representando las causas directas (mapa 31) que conllevan a dicha degradación, como la zonificación de los impactos sobre los servicios ecosistémicos (mapa 32).
Mapa 29. Mapa de tipos de degradación de las tierras bajo MapQuest.
Mapa 30. Mapa de grados de degradación de las tierras bajo MapQuest.
Mapa 31. Mapa de causas directas de la degradación de las tierras bajo MapQuest.
Evaluación de la degradación de las tierras a nivel local – San Juan Nepomuceno (Bolívar)

Mapa 32. Mapa de impactos sobre los servicios ecosistémicos bajo MapQuest.
4.4. Conservación de las tierras por SUT (Q4).

Un nuevo informe de la Dirección de Fomento de Tierras y Aguas del Departamento de Agricultura de la FAO advierte que las presiones demográficas, junto con el incremento de la demanda de alimentos, combustibles y materiales para construcción, están ejerciendo presiones cada vez más fuertes en los recursos naturales de América Latina. El informe calcula que la erosión y acidificación de los suelos, la pérdida de materia orgánica, la compactación de los suelos, la pérdida de elementos nutritivos y la salinización han reducido la productividad de más de tres millones de kilómetros cuadrados de tierras agrícolas, mientras que casi 800 mil kilómetros cuadrados de tierras áridas corren peligro de desertificarse por un exceso de pastoreo y de explotación de la vegetación para uso doméstico, por deforestación y por utilización de métodos inadecuados de riego. (FAO, 1998)

El trabajo de la FAO en tierras y agua es relevante para varias dimensiones del desarrollo sustentable, tales como la gobernabilidad y manejo de sistemas de producción de alimento; la provisión de servicios ecosistémicos esenciales; seguridad alimentaria; salud humana; conservación de la biodiversidad; y la mitigación y adaptación al cambio climático. El acercamiento coordinado de la FAO hacia el manejo de la tierra y el agua ayuda a crear conciencia de la degradación del recurso agua causada por prácticas agrícolas inapropiadas, como el riego excesivo y la deforestación, especialmente en ecosistemas escasos de agua. (FAO, 2018)

Los ecosistemas en Colombia normalmente están siendo alterados o modificados por la expansión agrícola, ganadera, minero energética e infraestructuras, posiblemente referido a actividades inapropiadas que conllevan a un manejo inapropiado de las tierras y aguas.

Para adquirir la seguridad alimentaria y medios de vida se aplican métodos apropiados del manejo de la tierra que ayudan a invertir la degradación de recursos del suelo, agua y biológicos y para aumentar la producción de cultivo y ganadería. Los efectos de degradación de suelos son numerosos. Entre ellos se incluye la disminución de la fertilidad del suelo, elevación de acidez, salinidad, alcalinización, deterioro de la estructura del suelo, erosión eólica e hídrica acelerada, pérdida de la materia orgánica y de biodiversidad. Como resultado la productividad y los ingresos referentes de la agricultura se disminuyen, la migración hacia áreas urbanas se incrementan y la pobreza rural se exacerba. Se toman medidas para recuperar la productividad de suelos degradados cuyas se deben conectar con otras medidas que afectan las prácticas de manejo de tierras en particular la agricultura de conservación, buenas prácticas agrícolas y manejo de riegos y el Manejo Integrado de Nutrición de las Plantas (MINP).

La Reseña Mundial de Enfoques y Tecnologías de la Conservación (WOCAT) lanzada en 1992, en colaboración con algunas instituciones y coordinada por la Universidad de Berna, Suiza, es un proyecto de la Asociación Mundial de la Conservación del Suelo y del Ambiente (WASWC). El proyecto aspira a promover la integración de métodos exitosos en la conservación de agua y suelos y usos de la tierra en todo el mundo. WOCAT utiliza las siguientes diferencias:

- Conservación del suelo y del agua (SWC). En el contexto de WOCAT, se define como: las actividades a nivel local que mantienen o aumentan la capacidad productiva de la tierra en áreas afectadas por o propensas a la degradación. SWC
incluye la prevención o la reducción de la erosión del suelo, consolidación y la salinidad; la conservación o drenaje del suelo; el mantenimiento o mejoramiento de la fertilidad del suelo.

- **Tecnologías de SWC.** Las tecnologías de SWC son medidas agronómicas, vegetativas, estructurales, y de gestión que controlan la degradación del suelo y aumentan la productividad del campo. Cuestionario de Tecnologías (QT).
- **Enfoques de SWC.** Los enfoques de SWC son modos y medios del apoyo que ayudan a introducir, implementar, adaptar y aplicar las tecnologías SWC en el campo. Cuestionario de Enfoques (QA).

Mientras que los cuestionarios sobre las Tecnologías de MST (QT) y los Enfoques del MST (QA) recopilan información detallada sobre las actividades de conservación, el cuestionario (Q4) sobre mapas pretende proveer la información necesaria para obtener una visualización geográfica sobre algunos datos importantes para la conservación (figura 26).

![Diagrama Q4](image)

Figura 26. Conservación de las tierras. Paso 4 del cuadro metodológico para la evaluación de la degradación de las tierras en el área piloto.

Esta metodología permite determinar indicadores de respuesta, a partir de la identificación de:

- La tecnología más utilizada (individual o combinada).
- La asignación a cada tecnología identificada a un Grupo de Conservación.
- La categoría a cada tecnología de acuerdo a las medidas de conservación: agronómicas, vegetativas, estructurales, de manejo, incluyendo las combinaciones.
- La indicación si la tecnología ha sido implementada con el propósito de prevención, mitigación y/o rehabilitación de la degradación de la tierra.
- La indicación de la extensión de cada tecnología como porcentaje del área de la unidad de mapeo (el área del sistema/clasificación del uso de la tierra dentro de la unidad administrativa).
- La indicación de la degradación tratada por medidas de conservación.
- La estimación de la clase “efectiva” de tecnología identificada por unidad de sistema/clasificación de uso de la tierra.
- La indicación de cualquier tendencia hacia la mayor o menor efectividad de la conservación.
- La indicación del impacto sobre los servicios del ecosistema (tipo y nivel).
- La indicación de cuando fue instalada cada tecnología.
La referencia de uno o varios cuestionarios del WOCAT sobre las Tecnologías de MST (QT) que describe las tecnologías enumeradas. Si no se dispone de ningún QT para una tecnología específica, se dan algunos detalles precisos.

En caso de querer profundizar más en la herramienta de mapeo “Un cuestionario para posibilitar la realización de Mapas de la Degradación de la Tierra y el Desarrollo de Mecanismos para el Manejo Sostenible de la Tierra” visitar la página de internet https://www.wocat.net/library/media/18/, en la cual se puede descargar el manual en diferentes idiomas.

4.4.1. Generación del mapa de conservación de las tierras bajo MapQuest, cuestionario (Q4).

Determinado el estado, presión e impacto sobre los servicios ecosistémicos que conlleva la degradación de las tierras en el área piloto (San Juan Nepomuceno), fue necesario identificar los métodos aplicados (prácticas) para el manejo de la tierra y evidenciar si son apropiados para invertir la degradación en los recursos suelo, agua y biológicos sin afectar la producción agrícola.

Dentro de la dinámica del taller de expertos y como se describió en el capítulo 4.3.4., con la aplicación del cuestionario (Q3), se procedió a continuar con el paso 4 de la herramienta de mapeo por cuestionarios (MapQuest) bajo la metodología WOCAT/LADA. Con el objeto de identificar los indicadores de respuesta a la degradación de las tierras por cada SUT, se diligenciaron los cuestionarios Q4 (figura 27) por cada SUT manteniendo las mismas mesas de trabajo que aportaron al ajuste y validación de los SUT, como a la identificación de la degradación de las tierras (fotografía 5). El anexo 7 recopila los cuestionarios (Q4) diligenciados en el taller de expertos.

<table>
<thead>
<tr>
<th>Conservación (Paso 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Nombre</td>
</tr>
</tbody>
</table>

Figura 27. Cuestionario (Q4). Paso 4, conservación de las tierras por cada SUT (MapQuest).
Para el diligenciamiento del cuestionario 4 (Q4) se escogieron 7 de las 11 variables disponibles dentro de la metodología, con el objeto de recopilar la información necesaria para obtener una visualización geográfica sobre algunos datos importantes para la conservación. Las variables evaluadas dentro del cuestionario fueron:

- Identificación de la tecnología más utilizada (individual o combinada).
- Identificación del Grupo de Conservación al cual pertenece la tecnología identificada.
- Indicación de la extensión de cada tecnología como porcentaje del área de la unidad de mapeo (el área del sistema/clasificación del uso de la tierra dentro de la unidad administrativa).
- Indicación de la degradación tratada por medidas de conservación.
- Estimación de la clase “efectiva” de tecnología identificada por unidad de sistema/clasificación de uso de la tierra.
- Indicación del impacto sobre los servicios del ecosistema (tipo y nivel).
- Indicación de cuando fue instalada cada tecnología.

En el documento “Un cuestionario para posibilitar la realización de Mapas de la Degradación de la Tierra y el Desarrollo de Mecanismos para el Manejo Sostenible de la Tierra” descargable en el link https://www.wocat.net/library/media/18/, se puede identificar el paso a paso para el diligenciamiento del cuestionario 4 (Q4).

Diligenciados los cuestionarios Q4 por cada SUT, se procedió a recopilar los datos (tabla 15) que arrojan los indicadores de respuesta, con el objeto de zonificar la variable del grupo de conservación e identificar de esta manera las prácticas o tecnologías más utilizadas en el manejo de tierras del área piloto.

Posteriormente, se procedió a zonificar el indicador de respuesta bajo la herramienta de mapeo por cuestionarios representado por el grupo de conservación de las tierras (mapa 33). Esta zonificación permite identificar los grupos de conservación de las tierras por sistema de uso y degradación de las mismas.
Tabla 15. Recopilación de los cuestionarios Q4 (MapQuest).

<table>
<thead>
<tr>
<th>Clase de Uso</th>
<th>Zona Climática</th>
<th>Terreno</th>
<th>Tecnología y/o Práctica</th>
<th>Gruppo de Conservación</th>
<th>Area (%)</th>
<th>Degradación</th>
<th>Efectividad</th>
<th>Impacto de la Práctica sobre los SE</th>
<th>Período (Años)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agroforestal</td>
<td>Cálido semihúmedo</td>
<td>Quebrado</td>
<td>Siembra de frutales y maderables</td>
<td>AP, SA, PR</td>
<td>10</td>
<td>Wt, Cp</td>
<td>2</td>
<td>P3, E3, E5, E7 (1)</td>
<td>15</td>
</tr>
<tr>
<td>Cultivos transitorios</td>
<td>Cálido semihúmedo</td>
<td>Quebrado</td>
<td>Tala y quema</td>
<td>RO</td>
<td>100</td>
<td>Wt, Ch, Bf</td>
<td>1</td>
<td>P2, E2, E3, E4, E7, S4 (-1)</td>
<td>>30</td>
</tr>
<tr>
<td>Ganadería</td>
<td>Cálido semihúmedo</td>
<td>Ondulado a plano</td>
<td>Renovación de pasturas</td>
<td>RO</td>
<td>10</td>
<td>Cn, Pc, Bh</td>
<td>1</td>
<td>E4, E7, S3 (1)</td>
<td>10</td>
</tr>
<tr>
<td>Ganadería</td>
<td>Cálido semihúmedo</td>
<td>Quebrado</td>
<td>Rotación de potreros</td>
<td>RO</td>
<td>100</td>
<td>Cn, Pc, Bh</td>
<td>1</td>
<td>E4, E7, S3 (1)</td>
<td>>30</td>
</tr>
<tr>
<td>Plantación forestal</td>
<td>Cálido semihúmedo</td>
<td>Ondulado a plano</td>
<td>Barbechos</td>
<td>RO</td>
<td>100</td>
<td>Bh</td>
<td>2</td>
<td>P1, E7, S4 (2)</td>
<td>8</td>
</tr>
<tr>
<td>Plantación forestal</td>
<td>Cálido semihúmedo</td>
<td>Quebrado</td>
<td>Barbechos</td>
<td>RO</td>
<td>100</td>
<td>Wt, Bf</td>
<td>2</td>
<td>P1, E7, S4 (2)</td>
<td>8</td>
</tr>
<tr>
<td>Cultivos permanentes arbores</td>
<td>Cálido semihúmedo</td>
<td>Ondulado a plano</td>
<td>Reforestación y protección ambiental</td>
<td>AP</td>
<td>100</td>
<td>Pc, Bh</td>
<td>2</td>
<td>P1 (1)</td>
<td>20</td>
</tr>
<tr>
<td>Cultivos permanentes arbores</td>
<td>Cálido semihúmedo</td>
<td>Quebrado</td>
<td>Reforestación y protección ambiental</td>
<td>AP</td>
<td>100</td>
<td>Bh</td>
<td>2</td>
<td>P1 (1)</td>
<td>20</td>
</tr>
<tr>
<td>Cultivos transitorios</td>
<td>Cálido semihúmedo</td>
<td>Quebrado</td>
<td>Tala y quema</td>
<td>RO</td>
<td>100</td>
<td>Wt, Ch, Bf</td>
<td>1</td>
<td>P2, E2, E3, E4, E7, S4 (-1)</td>
<td>>30</td>
</tr>
<tr>
<td>Ganadería</td>
<td>Cálido semihúmedo</td>
<td>Ondulado a plano</td>
<td>Rotación de potreros</td>
<td>RO</td>
<td>100</td>
<td>Cn, Pc, Bh</td>
<td>1</td>
<td>P1, E4, E7 (1)</td>
<td>>30</td>
</tr>
<tr>
<td>Ganadería</td>
<td>Cálido semihúmedo</td>
<td>Quebrado</td>
<td>Rotación de potreros</td>
<td>RO</td>
<td>100</td>
<td>Cn, Pc, Bh</td>
<td>1</td>
<td>P1, E4, E7 (1)</td>
<td>>30</td>
</tr>
<tr>
<td>Plantación forestal</td>
<td>Cálido semihúmedo</td>
<td>Ondulado a plano</td>
<td>Barbechos</td>
<td>RO</td>
<td>100</td>
<td>Bh, Bs</td>
<td>2</td>
<td>P1, E7, S4 (2)</td>
<td>8</td>
</tr>
<tr>
<td>Plantación forestal</td>
<td>Cálido semihúmedo</td>
<td>Quebrado</td>
<td>Barbechos</td>
<td>RO</td>
<td>100</td>
<td>Bh, Bs</td>
<td>2</td>
<td>P1, E7, S4 (2)</td>
<td>8</td>
</tr>
<tr>
<td>Silvopastoril</td>
<td>Cálido semihúmedo</td>
<td>Ondulado a plano</td>
<td>Siembra de árboles dispersos en pasturas bajas</td>
<td>AF</td>
<td>50</td>
<td>Cn, Pc, Bh</td>
<td>3</td>
<td>P1 (2)</td>
<td>20</td>
</tr>
<tr>
<td>Silvopastoril</td>
<td>Cálido semihúmedo</td>
<td>Quebrado</td>
<td>Siembra de árboles dispersos en pasturas</td>
<td>AF</td>
<td>40</td>
<td>Wt, Ch, Pc</td>
<td>2</td>
<td>P1 (2)</td>
<td>20</td>
</tr>
</tbody>
</table>
Evaluación de la degradación de las tierras a nivel local – San Juan Nepomuceno (Bolívar)

Mapa 33. Mapa de grupos de conservación de las tierras bajo MapQuest.
4.5. Recomendaciones del manejo de las tierras por SUT (Q5).

La metodología WOCAT/LADA se basa en el paradigma de la conjunción de las fuerzas motrices que producen los cambios y los impactos que surgen de ellas en el ecosistema. Las fuerzas motrices se describen con la sigla FPEIR que proviene de la unión de las iniciales de los factores intervinientes: Fuerza motrices – Presión – Estado – Impacto – Respuesta.

La metodología WOCAT/LADA desarrollada en los capítulos anteriores (desarrollo de los cuestionarios Q2, Q3, Q4) para el área piloto a nivel local (San Juan Nepomuceno), desarrolló el modelo FPEIR haciendo evaluación de la conjunción de información proveniente de las fuerzas motrices (Sistemas de Uso de las Tierras), los niveles de presión sobre los sistemas (causas directas e indirectas de la degradación de las tierras), los resultados de la evaluación del estado actual de la tierra (tipos, grados y tasa de degradación de las tierras), los grados de impacto (impacto de la degradación de las tierras sobre los servicios ecosistémicos) y las respuestas del ambiente evaluado (tecnologías-prácticas y grupos de conservación de las tierras).

Desarrollada la evaluación de la degradación de las tierras para el área piloto, se debe determinar por parte de los expertos las acciones a desarrollar para abordar la degradación de las mismas por cada SUT. Para determinar dichas acciones, se diligenciaron los cuestionarios Q5 (figura 28) por cada SUT manteniendo las mismas mesas de trabajo del taller de expertos (fotografía 6), tal como se describió en el capítulo 4.4.1., con la aplicación del cuestionario (Q4) el cual aportó con la identificación de las prácticas de conservación de las tierras. El anexo 8 recopila los cuestionarios (Q5) diligenciados en el taller de expertos.

<table>
<thead>
<tr>
<th>Nombre:</th>
<th>País:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identificación de la Unidad de Mapeo:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recomendaciones de Expertos (Paso 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>k) Recomendaciones de Expertos</td>
</tr>
<tr>
<td>Información adicional y comentarios</td>
</tr>
</tbody>
</table>

Figura 28. Cuestionario (Q5). Paso 5, recomendaciones de expertos (MapQuest).

Para el diligenciamiento del cuestionario 5 (Q5) se propusó la incorporación de dos variables más de calificación dentro de la metodología, con el objeto de recopilar adicionalmente información del uso propuesto en un futuro y las prácticas sostenibles propuestas para ese uso de las tierras. Las variables evaluadas dentro del cuestionario fueron:

- Recomendaciones de expertos.
- Uso propuesto.
- Prácticas propuestas.
A continuación se describe la manera de indicar las recomendaciones de expertos referidas a las intervenciones:

- **Adaptación al problema (A):** La degradación es demasiado seria como para tratar con ella y es aceptada como un hecho vital, o es que no valen la pena los esfuerzos para invertir en ella.

- **Prevención (P):** Implica el uso de medidas de conservación que mantienen los recursos naturales y sus funciones ambientales y productivas sobre la tierra que pueden ser propensas a la degradación. La consecuencia es que las buenas prácticas de manejo de la tierra ya están en marcha: es efectivamente la antítesis de la degradación inducida por las personas.

- **Mitigación (M):** En la intervención con la intención de reducir el desarrollo de la degradación. Esta toma lugar cuando el proceso de degradación ya está en curso. El principal objetivo es detener la degradación y comenzar las mejoras de los recursos y sus funciones. Los impactos de la mitigación tienden a ser perceptibles en el corto y mediano plazo, esto proveerá un fuerte incentivo para seguir con los esfuerzos. La palabra “mitigación” también es a veces utilizada para describir la disminución del impacto de la degradación.

- **Rehabilitación (R):** se requiere cuando la tierra ya está degradada hasta el punto en el cual el uso original ya no es posible y la tierra se volvió prácticamente inproductiva. Aquí las inversiones de largo plazo y más cotosas son necesarias para mostrar cualquier impacto.

Diligenciados los cuestionarios Q5 por cada SUT, se procedió a recopilar los datos (tabla 16) que recolectaron los expertos, con el objeto de zonificar la variable de recomendaciones (mapa 34) e identificar de ésta manera las intervenciones sobre cómo abordar la degradación en el área piloto.
Tabla 16. Recopilación de los cuestionarios Q5 (MapQuest).

<table>
<thead>
<tr>
<th>Clase de Uso</th>
<th>Zona climática</th>
<th>Terreno</th>
<th>Recomendaciones de expertos</th>
<th>Uso propuesto</th>
<th>Prácticas propuestas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agroforestal</td>
<td>Cálido semihúmedo</td>
<td>Quebrado</td>
<td>(P) PREVENCIÓN</td>
<td>Agroforestal semihúmedo quebrado</td>
<td>Cultivos perennes. Curvas a nivel. Zanjas de infiltración. Terrazas</td>
</tr>
<tr>
<td>Cultivos transitorios</td>
<td>Cálido semihúmedo</td>
<td>Quebrado</td>
<td>(M) MITIGACIÓN</td>
<td>Cultivos transitorios semihúmedo quebrado</td>
<td>Cultivos intercalados, contornos con cultivos, mantillos.</td>
</tr>
<tr>
<td>Silvopastoril</td>
<td>Cálido semihúmedo</td>
<td>Ondulado a plano</td>
<td>(M) MITIGACIÓN</td>
<td>Silvopastoril semiárido quebrado</td>
<td>Mejoramiento de pasturas. División de potreros. Rotación de ciclos cortos</td>
</tr>
<tr>
<td>Silvopastoril</td>
<td>Cálido semihúmedo</td>
<td>Quebrado</td>
<td>(P) PREVENCIÓN</td>
<td>Agrosilvopastoral semihúmedo quebrado</td>
<td>Mayor intensidad de árboles frutales, maderables y bancos proteicos establecidos en curvas de nivel. Cercas vivas</td>
</tr>
<tr>
<td>Agroforestal</td>
<td>Cálido semiárido</td>
<td>Ondulado a plano</td>
<td>(P) PREVENCIÓN</td>
<td>Agroforestal semiárido quebrado</td>
<td>Cultivos perennes. Zanjas de infiltración.</td>
</tr>
<tr>
<td>Cultivos permanentes arbóreos</td>
<td>Cálido semiárido</td>
<td>Ondulado a plano</td>
<td>(M) MITIGACIÓN</td>
<td>Cultivo permanente semiárido ondulado a plano</td>
<td>Abonos orgánicos. Reconversion de residuos de cosecha. Infraestructura para la recolección de racimos (via aérea por camuchas). Disminuir carga química en el paquete tecnológico. Utilizar insecticidas y fumicidas orgánicos. Recuperación de microcuencas con especies nativas. Disminución del uso de maquinaria pesada.</td>
</tr>
<tr>
<td>Cultivos permanentes arbóreos</td>
<td>Cálido semiárido</td>
<td>Quebrado</td>
<td>(M) MITIGACIÓN</td>
<td>Cultivo permanente semiárido quebrado</td>
<td>Abonos orgánicos. Reconversión de residuos de cosecha. Disminuir carga química en el paquete tecnológico. Utilizar insecticidas y fumigadas orgánicas. Recuperación de microcuencas con especies nativas.</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------------------</td>
<td>----------</td>
<td>----------------</td>
<td>--------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Cultivos transitorios</td>
<td>Cálido semiárido</td>
<td>Quebrado</td>
<td>(M) MITIGACIÓN</td>
<td>Cultivos transitorios semiárido quebrado</td>
<td>Cultivos intercaldados, contornos con cultivos, mantillos.</td>
</tr>
<tr>
<td>Silvopastoril</td>
<td>Cálido semiárido</td>
<td>Ondulado a plano</td>
<td>(M) MITIGACIÓN</td>
<td>Silvopastoril semiárido ondulado a plano</td>
<td>Utilizar pasturas mejoradas. Rotación permanente de los animales. Aumentar el número de árboles (especies nativas). Banco de silos y proteínas.</td>
</tr>
</tbody>
</table>
Mapa 34. Mapa de recomendaciones para abordar la degradación de las tierras bajo MapQuest.
4.6. Base de datos geográfica.

Con el objeto de sistematizar la información de la evaluación de la degradación de las tierras en el área piloto, se estructuró un espacio de almacenamiento digital denominado “Evaluacion_Degradacion_Tierras_Local.gdb” bajo el formato de una base de datos cartográfica de archivos (File Geodatabase).

Una geodatabase de archivos es una colección de archivos en una carpeta en el disco que puede almacenar, consultar y administrar datos espaciales y datos no espaciales. El tamaño máximo predeterminado de datasets en geodatabases de archivos es 1 TB. El tamaño máximo se puede aumentar a 256 TB para datasets grandes (normalmente raster). Las geodatabases de archivos también pueden contener subtipos y dominios y participar en replicación checkout/check-in y réplicas unidireccionales. Además varios usuarios pueden acceder simultáneamente a una geodatabase de archivos. Si los usuarios están realizando modificaciones, deben editar datasets diferentes. (Esri, 2017)

4.6.1. Estructura de la base de datos geográfica.

La geodatabase de archivos “Evaluacion_Degradacion_Tierras_Local.gdb” se compone de los siguientes conjuntos de datos (Feature Dataset), clases de entidades (Feature Class) y tablas alfanuméricas:

- **Área de trabajo**: Feature Dataset que almacena la clase de entidad del nivel de estudio (área piloto a nivel local) con base en el límite municipal de San Juan Nepomuceno (Bolívar), fuente base cartográfica IGAC 2017.
- **Sistemas de uso de las tierras (SUT)**: Feature Dataset que almacena la clase de entidad de los Sistemas de Uso de las Tierras (SUT), fuente proyecto GCP/GLO/337/GFF convenio UPRA-FAO 276-16.
- **Degradación de las tierras**: Feature Dataset que almacena las clases de entidad degradación de las tierras, conservación de las tierras y recomendaciones, bajo la herramienta de mapeo por cuestionarios (MapQuest) metodología WOCAT/LADA.

La geodatabase de archivos almacena a su vez, las tablas alfanuméricas que recoplan los datos diligenciados en los cuestionarios Q3, Q4 y Q5, relacionadas (1-M) con la clase de entidad de la degradación de las tierras por cada sistema de uso bajo MapQuest. Las tablas generadas son las siguientes:

- “Tabla_MQ_Q3_Degradacion”, contiene los datos del cuestionario Q3 diligenciado por cada SUT.
- “Tabla_MQ_Q4_Conservacion”, contiene los datos del cuestionario Q4 diligenciado por cada SUT.
- “Tabla_MQ_Q5_Recomendaciones”, contiene los datos del cuestionario Q5 diligenciado por cada SUT.

La figura 29 representa la estructura de la base de datos geográfica.
Figura 29. Estructura de la base de datos geográfica.

4.6.2. Sistema de coordenadas.

En Colombia el Instituto Geográfico Agustín Codazzi, organismo nacional encargado de determinar, establecer, mantener, y proporcionar los sistemas de referencia geodésico, gravimétrico y magnético (Decretos No. 2113/1992 y 208/2004), inició a partir de las estaciones SIRGAS (Sistema de Referencia Geocéntrico para las Américas), la determinación de la Red Básica GPS, denominada MAGNA (Marco Geocéntrico Nacional de Referencia), que por estar referida a SIRGAS, se denomina convencionalmente MAGNA-SIRGAS. Esta se halla conformada por cerca de 70 estaciones GPS de cubrimiento nacional de las cuales 6 son de funcionamiento continuo, 8 son vértices SIRGAS y 16 corresponden con la red geodinámica CASA (Central and South American geodynamics network). Las coordenadas (elipsoidales) de las estaciones MAGNA-SIRGAS están definidas sobre el ITRF94, época 1995.4. Estos fueron determinados durante los años 1994, 1995 y 1997 con el propósito de suministrar una plataforma confiable a los productores y usuarios de información georreferenciada en el país.

Para la elaboración de cartografía a escalas entre 1:10.000 y 1:500.000, es necesario realizar la conversión entre coordenadas elipsoidales (φ, λ, h) y coordenadas planas (N, E). Para esto es necesario definir una proyección cartográfica, que para Colombia es el sistema Gauss-Krüger. Este es una representación conforme del elipsoide sobre un plano, es decir que el ángulo formado entre dos líneas sobre la superficie terrestre se mantiene al ser éstas proyectadas sobre el plano. Los meridianos y paralelos se intersectan perpendicularmente, pero no son líneas rectas, sino curvas complejas, excepto el meridiano central (de tangencia) y el paralelo de referencia. La escala de representación permanece constante sobre el meridiano central, pero ésta varía al alejarse de aquel, introduciendo deformaciones en función de la longitud (λ). Por tal razón, el desarrollo de la proyección se controla mediante “husos”, que en el caso de Colombia se extienden 1,5° al lado y lado del meridiano central.
En Colombia, el origen principal de las coordenadas Gauss-Krüger se definió en la pilastra sur del Observatorio Astronómico de Bogotá, asignándose los valores \(N = 1.000.000 \) m y \(E = 1.000.000 \) m. Los orígenes complementarios se han establecido a \(3^\circ \) y \(6^\circ \) de longitud al este y oeste de dicho punto, adicionando un origen más al oeste (\(12^\circ \)) para el archipiélago de San Andrés. Las coordenadas MAGNA de los orígenes Gauss-Krüger en Colombia se describen en la tabla 17. (IGAC, 2004)

<table>
<thead>
<tr>
<th>Origen</th>
<th>Coordenadas Elipsoidales</th>
<th>Coordenadas Gauss-Krüger</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Latitud (N)</td>
<td>Longitud (W)</td>
</tr>
<tr>
<td>Bogotá-MAGNA</td>
<td>(4^\circ 35' 46,3215'')</td>
<td>(74^\circ 04' 39,0285'')</td>
</tr>
<tr>
<td>Este Central-MAGNA</td>
<td>(4^\circ 35' 46,3215'')</td>
<td>(71^\circ 04' 39,0285'')</td>
</tr>
<tr>
<td>Este Este-MAGNA</td>
<td>(4^\circ 35' 46,3215'')</td>
<td>(68^\circ 04' 39,0285'')</td>
</tr>
<tr>
<td>Oeste-MAGNA</td>
<td>(4^\circ 35' 46,3215'')</td>
<td>(77^\circ 04' 39,0285'')</td>
</tr>
<tr>
<td>Oeste Oeste_MAGNA</td>
<td>(4^\circ 35' 46,3215'')</td>
<td>(80^\circ 04' 39,0285'')</td>
</tr>
<tr>
<td>Insular-MAGNA</td>
<td>(4^\circ 35' 46,3215'')</td>
<td>(83^\circ 04' 39,0285'')</td>
</tr>
</tbody>
</table>

Teniendo en cuenta lo anterior y definido el área piloto a escala 1:25.000 (San Juan Nepomuceno – Bolívar), se identificó que el origen Gauss-Krüger a trabajar es Bogotá-MAGNA o también definido como MAGNA Colombia Bogotá. De ésta manera se procedió a definir en la geodatabase de archivos todos los conjuntos de datos (dataset), con el sistema de coordenadas geográficas MAGNA (Marco Geocéntrico Nacional de Referencia) bajo el sistema de proyección Gauss-Krüger en origen central (Magna Colombia Bogota) con identificador de referencia espacial 3116 autoría del EPSG (European Petroleum Survey Group). Las propiedades se describen en la figura 30.

Figura 30. Propiedades del sistema de coordenadas asignado a los conjunto de datos.

4.6.3. Atributos de las clases de entidades.

La información en tablas, es la base de las entidades geográficas y le permite visualizar, consultar y analizar los datos. En pocas palabras, las tablas están constituidas por filas y columnas, y todas las filas tienen las mismas columnas. En ArcGIS, las filas se denominan registros y las columnas atributos o campos. Cada atributo puede almacenar un tipo de datos específico, como un número, una fecha o una fracción de texto.

En realidad, las clases de entidad son simplemente tablas con campos especiales que contienen información sobre la geometría de las entidades. Estos incluyen el atributo “forma o geometría” para clases de entidad de punto, línea y entidad poligonal, y el atributo BLOB para clases de entidad de anotación. ArcGIS agrega, completa y mantiene automáticamente algunos campos, como el número de identificador único (ObjectID) y forma (Shape). A continuación se describen los campos para cada clase de entidad (feature class):
• **Nivel local**: La capa espacial del nivel local (límite municipal de San Juan Nepomuceno, Bolívar), está compuesta por los siguientes atributos (tabla 18), que caracterizan las áreas administrativas de trabajo. Feature Class “Nivel_Local”.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Data Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBJECTID</td>
<td>Object ID</td>
</tr>
<tr>
<td>SHAPE</td>
<td>Geometry</td>
</tr>
<tr>
<td>municipio</td>
<td>Text</td>
</tr>
<tr>
<td>departamento</td>
<td>Text</td>
</tr>
<tr>
<td>id</td>
<td>Long Integer</td>
</tr>
<tr>
<td>area_ha</td>
<td>Double</td>
</tr>
<tr>
<td>SHAPE_Length</td>
<td>Double</td>
</tr>
<tr>
<td>SHAPE_Area</td>
<td>Double</td>
</tr>
</tbody>
</table>

• **Sistema del uso de la tierra, local**: La capa espacial de los SUT está compuesta por los siguientes atributos (tabla 19), que caracterizan las unidades básicas de evaluación. Feature Class “Sistema_Uso_Tierra_Local”.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Data Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBJECTID</td>
<td>Object ID</td>
</tr>
<tr>
<td>SHAPE</td>
<td>Geometry</td>
</tr>
<tr>
<td>cobertura_tierra</td>
<td>Text</td>
</tr>
<tr>
<td>clase_uso</td>
<td>Text</td>
</tr>
<tr>
<td>tipo_uso</td>
<td>Text</td>
</tr>
<tr>
<td>zona_climatica</td>
<td>Text</td>
</tr>
<tr>
<td>tipo_pendiente</td>
<td>Text</td>
</tr>
<tr>
<td>sistema_uso</td>
<td>Text</td>
</tr>
<tr>
<td>ucsuelo</td>
<td>Text</td>
</tr>
<tr>
<td>vereda</td>
<td>Text</td>
</tr>
<tr>
<td>corregimiento</td>
<td>Text</td>
</tr>
<tr>
<td>fronteragricola</td>
<td>Text</td>
</tr>
<tr>
<td>area_ha</td>
<td>Double</td>
</tr>
<tr>
<td>identificador</td>
<td>Long Integer</td>
</tr>
<tr>
<td>SHAPE_Length</td>
<td>Double</td>
</tr>
<tr>
<td>SHAPE_Area</td>
<td>Double</td>
</tr>
</tbody>
</table>

• **Degradación de las tierras, MapQuest**: La capa espacial de degradación de las tierras bajo MapQuest, está compuesta por los siguientes atributos (tabla 20) que caracterizan las unidades de degradación bajo indicadores de estado, presión e impacto; indicadores de respuesta analizados como conservación de la tierra (prácticas de manejo); y recomendaciones las cuales permiten determinar cómo abordar la degradación de las tierras bajo cada SUT. Feature Class “Degradacion_Tierras_Map_Quest”.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Data Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBJECTID</td>
<td>Object ID</td>
</tr>
<tr>
<td>SHAPE</td>
<td>Geometry</td>
</tr>
<tr>
<td>cobertura_tierra</td>
<td>Text</td>
</tr>
<tr>
<td>tipo_uso</td>
<td>Text</td>
</tr>
<tr>
<td>zona_climatica</td>
<td>Text</td>
</tr>
<tr>
<td>tipo_pendiente</td>
<td>Text</td>
</tr>
<tr>
<td>sistema_uso</td>
<td>Text</td>
</tr>
<tr>
<td>ucsuelo</td>
<td>Text</td>
</tr>
<tr>
<td>vereda</td>
<td>Text</td>
</tr>
<tr>
<td>corregimiento</td>
<td>Text</td>
</tr>
<tr>
<td>fronteragricola</td>
<td>Text</td>
</tr>
<tr>
<td>area_ha</td>
<td>Double</td>
</tr>
<tr>
<td>identificador</td>
<td>Long Integer</td>
</tr>
<tr>
<td>SHAPE_Length</td>
<td>Double</td>
</tr>
<tr>
<td>SHAPE_Area</td>
<td>Double</td>
</tr>
</tbody>
</table>
Tabla 20. Atributos de la capa espacial degradación de las tierras bajo MapQuest.

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Data Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBJECTID</td>
<td>Object ID</td>
</tr>
<tr>
<td>SHAPE</td>
<td>Geometry</td>
</tr>
<tr>
<td>clase_uso</td>
<td>Text</td>
</tr>
<tr>
<td>tipo_uso</td>
<td>Text</td>
</tr>
<tr>
<td>sistema_uso</td>
<td>Text</td>
</tr>
<tr>
<td>vereda</td>
<td>Text</td>
</tr>
<tr>
<td>corregimiento</td>
<td>Text</td>
</tr>
<tr>
<td>fronteragricola</td>
<td>Text</td>
</tr>
<tr>
<td>tipo</td>
<td>Text</td>
</tr>
<tr>
<td>extension_porcen</td>
<td>Double</td>
</tr>
<tr>
<td>grado</td>
<td>Long Integer</td>
</tr>
<tr>
<td>tasa</td>
<td>Long Integer</td>
</tr>
<tr>
<td>causas_directas</td>
<td>Text</td>
</tr>
<tr>
<td>causas_indirecta</td>
<td>Text</td>
</tr>
<tr>
<td>impacto_degra_se</td>
<td>Text</td>
</tr>
<tr>
<td>tecnop_practica</td>
<td>Text</td>
</tr>
<tr>
<td>grupo_conserva</td>
<td>Text</td>
</tr>
<tr>
<td>area_ocupacion</td>
<td>Double</td>
</tr>
<tr>
<td>efectividad</td>
<td>Double</td>
</tr>
<tr>
<td>impacto_pract_se</td>
<td>Text</td>
</tr>
<tr>
<td>periodo</td>
<td>Text</td>
</tr>
<tr>
<td>recomendaciones</td>
<td>Text</td>
</tr>
<tr>
<td>uso_propuesto</td>
<td>Text</td>
</tr>
<tr>
<td>practica_propues</td>
<td>Text</td>
</tr>
<tr>
<td>id</td>
<td>Long Integer</td>
</tr>
<tr>
<td>llave</td>
<td>Text</td>
</tr>
<tr>
<td>area_ha</td>
<td>Double</td>
</tr>
<tr>
<td>SHAPE_Length</td>
<td>Double</td>
</tr>
<tr>
<td>SHAPE_Area</td>
<td>Double</td>
</tr>
</tbody>
</table>

4.6.4. Estándares de calidad de datos.

Con el objeto de estandarizar la información geográfica que representa la evaluación de la degradación de las tierras en el área rural del municipio de San Juan Nepomuceno (Bolívar), se tuvo en cuenta los estándares de datos regulados por el ICONTEC – CTN028 bajo la NTC 5662 (Especificaciones técnicas).

En la especificación técnica de un producto geográfico se establecen características generales del producto y se determinan elementos importantes como el modelo de datos, el modelo de representación, la evaluación de la calidad y el perfil de metadato. Para que cumpla su propósito debe estar terminada antes de comenzar la fase productiva y se debe implementar durante la creación del producto.
Esta norma hace referencia a partes de otras normas colombianas existentes, como la NTC 5661 (Catálogo de objetos), NTC 5043 (Conceptos básicos de calidad de los datos geográficos) y NTC 4611 (Metadatos).

La evaluación de la degradación de las tierras a nivel local, en el área piloto de San Juan Nepomuceno (Bolívar), se representó espacialmente bajo formato vectorial (polígonos), con un cubrimiento geográfico aproximado de -75,255662 Oeste, -74,860877 Este, 10,122079 Norte, 9,853310 Sur; proyectadas sobre un plano en origen central de 870.867,4 metros Este, 914.071,4 metros Este, 1.611.228,7 metros Norte, 1.581.624,4 metros Norte, a escala 1:25.000, bajo una estructura definida (capítulo 4.6.1.), soportada bajo el sistema de referencia MAGNA Colombia Bogota con identificador de referencia espacial 3116 autoría del EPSG (European Petroleum Survey Group). Se aplicaron elementos de calidad como grado de totalidad, consistencia lógica, exactitud temática, entre otros. Por último se realizaron los metadatos a las capas espaciales de los SUT y degradación de las tierras bajo MapQuest; basados en la plantilla estándar de la UPRA (Unidad de Planificación Rural Agropecuaria). Adicionalmente se diligencian los formularios técnicos de la UPRA GIC-FT-003, 004, 018, 024 y 025, dando cumplimiento a los estándares cartográficos de la entidad.

Ampliando un poco respecto a la consistencia lógica (consistencia topológica) se crearon dos reglas topológicas para cada una de las capas espaciales de la geodatabase de archivos (Esri, 2017):

- **No debe superponerse (Must Not Overlap):** Requiere que el interior de los polígonos no se superponga. Los polígonos pueden compartir ejes o vértices. Esta regla se utiliza cuando un área no puede pertenecer a dos o más polígonos.

- **No debe haber huecos (Must Not Have Gaps):** Esta regla precisa que no haya vacíos dentro de un polígono simple o entre polígonos adyacentes. Todos los polígonos deben formar una superficie continua. Siempre existirá un error en el perímetro de la superficie. Puede ignorar este error o marcarlo como una excepción. Utilice esta regla en datos que deben cubrir completamente un área.
5. RESULTADOS DE LA EVALUACIÓN DE LA DEGRADACIÓN DE LAS TIERRAS EN EL ÁREA PILOTO A NIVEL LOCAL

El Modelo FPEIR (Fuerzas motrices-Presión-Estado-Impacto-Respuesta) procura generar indicadores para describir sintéticamente:

- Cómo se encuentra el territorio en términos de impactos (Estado);
- Cuáles son las principales causas inmediatas que explican su condición (Presión);
- Cuáles son las causas mediadas que explican las presiones existentes (Fuerzas Motrices);
- Cuáles son las medidas que la sociedad ha establecido para mitigar, corregir o prevenir los impactos negativos (Respuesta, o Indicadores de Desarrollo Sostenible).

Para realizar la evaluación de la degradación de las tierras, en el marco del proyecto SD-MST en Colombia, se tuvo en cuenta los lineamientos metodológicos de LADA (Evaluación de la Degradación de Tierras en Zonas Áridas) y del WOCAT (Panorama mundial de enfoques y tecnologías de conservación), aplicable bajo la herramienta de mapeo por cuestionarios (MapQuest) “Cuestionario para posibilitar la realización de Mapas de la Degradación de la Tierra y el Desarrollo de Mecanismos para el Manejo Sostenible de la Tierra” (WOCAT, 2008).

La Evaluación del LADA es desarrollada en 3 escalas espaciales (local, nacional y global), y considera el estado, las fuerzas motrices y los impactos, proporcionando una mejor comprensión del fenómeno de la degradación, y da indicios sobre las respuestas apropiadas en todas las escalas de nivel.

WOCAT, tiene la misión de apoyar la investigación y los procesos de toma de decisión en el Manejo Sostenible de Tierras (MST), particularmente en relación con la Conservación del Suelo y el Agua, considerando así la respuesta al fenómeno de la degradación de las tierras. El principal objetivo del Manejo Sostenible de Tierras (MST) es promover la convivencia de los humanos con la naturaleza con una perspectiva de largo plazo, de forma tal que la provisión, regulación, cultura y los servicios de apoyo del ecosistema, sean garantizados.

De ésta manera la herramienta de mapeo WOCAT/LADA considera dentro de la metodología para la evaluación de la degradación de las tierras, el marco conceptual del modelo FPEIR (Fuerzas motrices-Presión-Estado-Impacto-Respuesta).

La herramienta de mapeo por cuestionarios del WOCAT/LADA se basa en el cuestionario de mapeo original del WOCAT (WOCAT, 2007). Este ha sido ampliado para prestar más atención a cuestiones como la degradación biológica e hídrica y hacer más hincapié en las causas directas y socioeconómicas de esos fenómenos, incluyendo los impactos sobre los servicios ecosistémicos. Se evalúa el tipo de degradación de la tierra que está...
ocurriendo actualmente, dónde y por qué ocurre y qué se hace al respecto en términos de Manejo Sostenible de Tierras (SLM), bajo la forma de un cuestionario. El vínculo de la información obtenida mediante el cuestionario con el Sistema de Información Geográfica (SIG) permite la generación de mapas así también de áreas de cálculo referidas a varios aspectos de la degradación y conservación de la tierra. La base de datos del mapa y los resultados del mapeo proveen una herramienta poderosa para la obtención de una visión general de la degradación y conservación de la tierra en un país, una región, o en el mundo entero. La herramienta de mapeo está constituida por la construcción de 5 pasos:

- **Paso 1:** Contribución de los Especialistas, diligenciamiento del cuestionario (Q1).
- **Paso 2:** Sistema/Clasificación del Uso de la Tierra (SUT), diligenciamiento del cuestionario (Q2).
- **Paso 3:** Degradación de la tierra por cada Sistema/Clasificación del Uso de la Tierra, diligenciamiento del cuestionario (Q3). Identificación de indicadores de estado, presión e impacto.
- **Paso 4:** Conservación de la Tierra, diligenciamiento del cuestionario (Q4). Identificación de indicadores de respuesta.
- **Paso 5:** Recomendaciones de expertos, diligenciamiento del cuestionario (Q5).

El proyecto SD-MST en Colombia, definió dos niveles de evaluación: subnacional a una escala de trabajo 1:100.000 y local a una escala de trabajo 1:25.000. Para el nivel subnacional, se aplicó la herramienta de mapeo por cuestionarios hasta el paso 3 con el objeto de definir y determinar los sistemas de uso de las tierras (SUT), como la degradación de las mismas por cada SUT, soportada bajo los Sistemas de Información Geográfica (SIG). De esta manera se logró identificar las fuerzas motrices, el estado, la presión y el impacto de la degradación de las tierras. Mientras que a nivel local, se aplicó la herramienta de mapeo hasta el paso 5, identificando el manejo sostenible de las tierras (indicador de respuesta), como el abordaje de la degradación por medio de procesos de adaptación, prevención, mitigación o rehabilitación. La figura 31 sintetiza la herramienta de mapeo aplicable tanto para el área piloto a nivel subnacional como a nivel local.

Los resultados de la evaluación de la degradación de las tierras que se describen a continuación hacen parte del área piloto a nivel Local.
Figura 31. Cuadro metodológico para la evaluación de la degradación de las tierras (MapQuest).
5.1. Sistemas de uso de las tierras.

A partir del mapa de sistemas de uso de las tierras se identificó para el área piloto, que la clase de uso con mayor predominancia es la clase Ganadería con un 32,2% del área piloto. Esta clase de uso está seguida por las clases Natural (29,5%), Silvopastoril (24,3%), Plantación forestal (6,5%), Cultivos permanentes arbóreos (2,1%), Áreas protegidas (1,8%), Zonas acuáticas (1,5%) y Agroforestal (1,0%). En el restante 1,3% se agrupan las clases asentamiento urbano, cultivos transitorios, infraestructura vial, infraestructura y minería en respectivo orden. La figura 32 describe el gráfico porcentual de las clases de uso de las tierras.

Como clases de uso de las tierras productivas, las de mayor predominancia son las clases de Ganadería, Silvopastoril y Plantación forestal con un 32,2%, 24,3% y 6,5% respectivamente, sumando el 62,9% del área piloto. Mientras que como clases de uso de las tierras protectoras, la de mayor predominancia es la clase Natural con un 29,5% del área piloto.

El mapa 35 representa las clases de uso de las tierras del área piloto, mientras que el mapa 36 representa los sistemas de uso de las tierras del área piloto y la figura 33 describe la leyenda del mapa de sistemas de uso de las tierras.
Mapa 35. Mapa de las Clases de Uso de las Tierras validado.
Mapa 36. Mapa de los Sistemas de Uso de las Tierras (SUT) validado.
La tabla 21 describe la estadística de las clases de uso de las tierras respecto a la ocupación en el territorio, diferenciando áreas objeto de zonificación ambiental y áreas de frontera agrícola.
Tabla 21. Estadísticas clases de uso vs. frontera agrícola.

<table>
<thead>
<tr>
<th>Clase de Uso</th>
<th>Áreas objeto de zonificación ambiental</th>
<th>Frontera Agrícola</th>
<th>Total general</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ganadería</td>
<td>7,3%</td>
<td>24,9%</td>
<td>32,2%</td>
</tr>
<tr>
<td>Natural</td>
<td>19,8%</td>
<td>9,6%</td>
<td>29,5%</td>
</tr>
<tr>
<td>Silvopastoril</td>
<td>6,5%</td>
<td>17,8%</td>
<td>24,3%</td>
</tr>
<tr>
<td>Plantación</td>
<td>2,4%</td>
<td>4,1%</td>
<td>6,5%</td>
</tr>
<tr>
<td>Forestal</td>
<td>0,3%</td>
<td>1,8%</td>
<td>2,1%</td>
</tr>
<tr>
<td>Zonas</td>
<td>1,7%</td>
<td>0,0%</td>
<td>1,8%</td>
</tr>
<tr>
<td>Protegida</td>
<td>0,2%</td>
<td>1,2%</td>
<td>1,5%</td>
</tr>
<tr>
<td>Agroforestal</td>
<td>0,2%</td>
<td>0,8%</td>
<td>1,0%</td>
</tr>
<tr>
<td>Asentamiento urbano</td>
<td>0,5%</td>
<td>0,1%</td>
<td>0,6%</td>
</tr>
<tr>
<td>Cultivos</td>
<td>0,2%</td>
<td>0,3%</td>
<td>0,5%</td>
</tr>
<tr>
<td>Infraestructura vial</td>
<td>0,0%</td>
<td>0,1%</td>
<td>0,2%</td>
</tr>
<tr>
<td>Infraestructura</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Total general</td>
<td>39,2%</td>
<td>60,8%</td>
<td>100,0%</td>
</tr>
</tbody>
</table>

La tabla 22 describe las estadísticas de las clases y sistemas de uso de las tierras respecto a la ocupación en el territorio.

Tabla 22. Estadísticas de las clases y sistemas de uso de las tierras.

<table>
<thead>
<tr>
<th>Clase de uso</th>
<th>Área</th>
<th>Area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sistema de uso</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ganadería</td>
<td>32,2%</td>
<td></td>
</tr>
<tr>
<td>Ganadería en clima cálido semiárido de alta intensidad</td>
<td>2,6%</td>
<td></td>
</tr>
<tr>
<td>Ganadería en clima cálido semiárido de baja intensidad</td>
<td>3,7%</td>
<td></td>
</tr>
<tr>
<td>Ganadería en clima cálido semiárido de moderada intensidad</td>
<td>13,8%</td>
<td></td>
</tr>
<tr>
<td>Ganadería en clima cálido semihúmedo de alta intensidad</td>
<td>0,7%</td>
<td></td>
</tr>
<tr>
<td>Ganadería en clima cálido semihúmedo de baja intensidad</td>
<td>11,4%</td>
<td></td>
</tr>
<tr>
<td>Natural</td>
<td>29,5%</td>
<td></td>
</tr>
<tr>
<td>Bosque abierto en clima cálido semiárido</td>
<td>0,4%</td>
<td></td>
</tr>
<tr>
<td>Bosque de galería y ripario en clima cálido semiárido</td>
<td>0,7%</td>
<td></td>
</tr>
<tr>
<td>Bosque de galería y ripario en clima cálido semihúmedo</td>
<td>0,1%</td>
<td></td>
</tr>
<tr>
<td>Bosque denso en clima cálido semiárido</td>
<td>0,7%</td>
<td></td>
</tr>
<tr>
<td>Bosque denso en clima cálido semihúmedo</td>
<td>1,6%</td>
<td></td>
</tr>
<tr>
<td>Bosque fragmentado en clima cálido semiárido</td>
<td>8,3%</td>
<td></td>
</tr>
<tr>
<td>Bosque fragmentado en clima cálido semihúmedo</td>
<td>5,0%</td>
<td></td>
</tr>
<tr>
<td>Vegetación secundaria o en transición en clima cálido semiárido</td>
<td>9,6%</td>
<td></td>
</tr>
<tr>
<td>Vegetación secundaria o en transición en clima cálido semihúmedo</td>
<td>3,2%</td>
<td></td>
</tr>
<tr>
<td>Silvopastoril</td>
<td>24,3%</td>
<td></td>
</tr>
<tr>
<td>Silvopastoril con pastos arbolados en clima cálido semiárido de alta intensidad</td>
<td>0,1%</td>
<td></td>
</tr>
<tr>
<td>Silvopastoril con pastos arbolados en clima cálido semiárido de baja intensidad</td>
<td>5,0%</td>
<td></td>
</tr>
<tr>
<td>Silvopastoril con pastos arbolados en clima cálido semiárido de moderada intensidad</td>
<td>0,3%</td>
<td></td>
</tr>
</tbody>
</table>
Dentro de la clase de uso de las tierras productiva de Ganadería (figura 34), se evidencia que el sistema de uso de las tierras con mayor predominancia es el sistema de Ganadería en clima cálido semiárido de moderada intensidad con un 42,9%, seguido por los sistemas de Ganadería en clima cálido semihúmedo de baja intensidad (11,5%), Ganadería en clima cálido semiárido de alta intensidad (8,1%) y Ganadería en clima cálido semihúmedo de...
alta intensidad (2,1%); arrojando un total del 100% sobre el 32,2% de la clase de uso de Ganadería del total general del territorio.

Dentro de la clase de uso de las tierras productiva Silvopastoril (figura 35), se evidencia que el sistema de uso de las tierras con mayor predominancia es el sistema Silvopastoril con pastos y espacios naturales en clima cálido semiárido de baja intensidad con un 43,6%, seguido por los sistemas Silvopastoril con pastos y espacios naturales en clima cálido semihúmedo de baja intensidad (25,6%), Silvopastoril con pastos arbolados en clima cálido semiárido de baja intensidad (20,7%), Silvopastoril con pastos arbolados en clima cálido semihúmedo de baja intensidad (7,1%) y Silvopastoril con pastos arbolados en clima cálido semiárido de moderada intensidad (1,1%), en el restante 1,9% se agrupan los otros sistemas silvopastoriles; arrojando un total del 100% sobre el 24,3% de la clase de uso Silvopastoril del total general del territorio.

Dentro de la clase de uso de las tierras productiva de Plantación forestal (figura 36), se evidencia que el sistema de uso de las tierras con mayor predominancia es el sistema de Plantación forestal en clima cálido semiárido con un 70,1%, seguido por el sistema Plantación forestal en clima cálido semihúmedo (29,9%); arrojando un total del 100% sobre el 6,5% de la clase de uso de Plantación forestal del total general del territorio.
Figura 35. Gráfico porcentual de los SUT en Silvopastoral.

Figura 36. Gráfico porcentual de los SUT en Plantación forestal.
5.2. Degradación de las tierras.

A pesar que la degradación natural de la tierra no está excluida, el énfasis de la evaluación de la degradación de tierras se basa en la degradación causada por las actividades humanas (degradación antrópica). Entendiendo que la principal actividad que aporta a la degradación de las tierras es el uso de la misma. Es por esto la necesidad de identificar y zonificar los SUT para posteriormente evaluar la degradación por cada uno de ellos.

El estado de la degradación de las tierras se identificó con base en la información a nivel nacional (1:100.000) de degradación de suelos (física, química y biológica, esta última desarrollada dentro del proyecto), pero adicionalmente se determinó la degradación de las tierras con base en la herramienta de mapeo por cuestionarios (MapQuest) bajo la metodología WOCAT/LADA, la cual permite generar la información a escala 1:25.000.

5.2.1. Estado de la degradación, bajo información de nivel nacional.

A partir de la información a nivel nacional de degradación de las tierras, como son los mapas de degradación física por erosión y degradación química por salinización (información nacional por el IDEAM) más el mapa de degradación biológica por transformación del bioma (fuente SD-MST en Colombia), se identificó el estado de degradación de las tierras a escala 1:100.000.

El estado de la degradación de las tierras bajo información nacional en el área piloto (figura 37) arroja que en algunos de los SUT se presentan tipos de degradación física como es la erosión (mapa 37), con grados leve (50,4%), moderado (25,5%), fuerte (6,8%) y extremo (0,0%); tipos de degradación química como es la salinización (mapa 38), con grados leve (38,9%), moderado (53,0%), fuerte (0,0%) y extremo (2,5%); y tipos de degradación biológica como es la transformación del bioma (mapa 39), con grados leve (0,0%), moderado (0,0%), fuerte (10,3%) y extremo (56,9%).

Los SUT productivos con mayor predominancia en el área piloto son los sistemas de ganadería, silvopastoril y plantación forestal con un 32,2%, 24,3% y 6,5% respectivamente, sumando el 63,0% del área total. Mientras que el SUT protector con mayor predominancia es el sistema natural con un 29,5% del área total.
Figura 37. Estado de la degradación de las tierras en el área piloto, bajo información nacional.
Mapa 37. Mapa de degradación física por erosión, bajo información nacional.
La tabla 23 describe las estadísticas del grado de degradación física (erosión) con base en las clases de uso de las tierras.

Tabla 23. Estadísticas del grado de degradación física (erosión) con base en las clases de uso de las tierras, bajo información nacional.

<table>
<thead>
<tr>
<th>CLASES DE USO</th>
<th>DEGRADACIÓN FÍSICA (EROSIÓN)</th>
<th>Total erosión</th>
<th>Sin erosión / No Suelo</th>
<th>Total general</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Leve</td>
<td>Moderado</td>
<td>Fuerte</td>
<td>Extremo</td>
</tr>
<tr>
<td>Con uso</td>
<td>35,6%</td>
<td>17,7%</td>
<td>5,9%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Ganadería</td>
<td>17,2%</td>
<td>9,3%</td>
<td>3,3%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Silvopastoril</td>
<td>13,5%</td>
<td>6,5%</td>
<td>2,2%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Plantación forestal</td>
<td>4,3%</td>
<td>1,3%</td>
<td>0,4%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Cultivos permanentes arbóreos</td>
<td>0,0%</td>
<td>0,3%</td>
<td>0,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Agroforestal</td>
<td>0,3%</td>
<td>0,1%</td>
<td>0,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Cultivos transitorios</td>
<td>0,3%</td>
<td>0,2%</td>
<td>0,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Minería</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Sin uso</td>
<td>14,9%</td>
<td>7,8%</td>
<td>0,9%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Natural</td>
<td>14,2%</td>
<td>7,2%</td>
<td>0,9%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Área protegida</td>
<td>0,6%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Zonas acuáticas</td>
<td>0,0%</td>
<td>0,3%</td>
<td>0,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Asentamiento urbano</td>
<td>0,0%</td>
<td>0,2%</td>
<td>0,1%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Infraestructura vial</td>
<td>0,1%</td>
<td>0,1%</td>
<td>0,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Infraestructura</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Total general</td>
<td>50,4%</td>
<td>25,5%</td>
<td>6,8%</td>
<td>0,0%</td>
</tr>
</tbody>
</table>

La tabla 24 describe las estadísticas del grado de degradación física (erosión) con base en las clases de uso de las tierras, diferenciando áreas objeto de zonificación ambiental y áreas de frontera agrícola.

Tabla 24. Estadísticas grado de degradación física vs. frontera agrícola, bajo información nacional.

<table>
<thead>
<tr>
<th>CLASES DE USO</th>
<th>DEGRADACIÓN FÍSICA (EROSIÓN)</th>
<th>Total erosión</th>
<th>Sin erosión / No Suelo</th>
<th>Total general</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Leve</td>
<td>Moderado</td>
<td>Fuerte</td>
<td>Extremo</td>
</tr>
<tr>
<td>Áreas objeto de zonificación ambiental</td>
<td>20,7%</td>
<td>8,1%</td>
<td>0,6%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Ganadería</td>
<td>4,4%</td>
<td>1,5%</td>
<td>0,2%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Silvopastoril</td>
<td>4,5%</td>
<td>1,0%</td>
<td>0,1%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Plantación forestal</td>
<td>1,5%</td>
<td>0,5%</td>
<td>0,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Cultivos permanentes arbóreos</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Agroforestal</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Cultivos transitorios</td>
<td>0,1%</td>
<td>0,1%</td>
<td>0,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Minería</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Natural</td>
<td>9,6%</td>
<td>4,8%</td>
<td>0,3%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Área protegida</td>
<td>0,5%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Zonas acuáticas</td>
<td>0,0%</td>
<td>0,1%</td>
<td>0,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Asentamiento urbano</td>
<td>0,0%</td>
<td>0,1%</td>
<td>0,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td></td>
<td>Infraestructura vial</td>
<td>Infraestructura</td>
<td>Frontera Agrícola</td>
<td>Ganadería</td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------------------</td>
<td>-----------------</td>
<td>-------------------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Infraestructura</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Frontera Agrícola</td>
<td>29,7%</td>
<td>17,4%</td>
<td>6,2%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Ganadería</td>
<td>12,8%</td>
<td>7,8%</td>
<td>3,1%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Silvopastoril</td>
<td>9,0%</td>
<td>5,5%</td>
<td>2,1%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Plantación forestal</td>
<td>2,8%</td>
<td>0,8%</td>
<td>0,3%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Cultivos permanentes</td>
<td>0,0%</td>
<td>0,3%</td>
<td>0,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>arbóreos</td>
<td>0,2%</td>
<td>0,1%</td>
<td>0,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Agroforestal</td>
<td>0,2%</td>
<td>0,1%</td>
<td>0,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Cultivos transitorios</td>
<td>0,2%</td>
<td>0,1%</td>
<td>0,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Minería</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Natural</td>
<td>4,5%</td>
<td>2,5%</td>
<td>0,6%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Área protegida</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Zonas acuáticas</td>
<td>0,0%</td>
<td>0,1%</td>
<td>0,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Asentamiento urbano</td>
<td>0,0%</td>
<td>0,1%</td>
<td>0,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Infraestructura vial</td>
<td>0,1%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Infraestructura</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Total general</td>
<td>50,4%</td>
<td>25,5%</td>
<td>6,8%</td>
<td>0,0%</td>
</tr>
</tbody>
</table>
Mapa 38. Mapa de degradación química por salinización, bajo información nacional.
La tabla 25 describe las estadísticas del grado de degradación química (salinización) con base en las clases de uso de las tierras.

Tabla 25. Estadísticas del grado de degradación química (salinización) con base en las clases de uso de las tierras, bajo información nacional.

<table>
<thead>
<tr>
<th>CLASES DE USO</th>
<th>LEVE</th>
<th>MODERADO</th>
<th>FUERTE</th>
<th>EXTREMO</th>
<th>TOTAL salinización</th>
<th>SIN evidencia / No Suelo</th>
<th>TOTAL general</th>
</tr>
</thead>
<tbody>
<tr>
<td>Con uso</td>
<td>27,7%</td>
<td>33,8%</td>
<td>0,0%</td>
<td>2,1%</td>
<td>63,6%</td>
<td>2,9%</td>
<td>66,5%</td>
</tr>
<tr>
<td>Ganadería</td>
<td>15,3%</td>
<td>15,4%</td>
<td>0,0%</td>
<td>0,1%</td>
<td>30,8%</td>
<td>1,3%</td>
<td>32,2%</td>
</tr>
<tr>
<td>Silvopastoril</td>
<td>10,5%</td>
<td>13,1%</td>
<td>0,0%</td>
<td>0,2%</td>
<td>23,8%</td>
<td>0,5%</td>
<td>24,3%</td>
</tr>
<tr>
<td>Plantación forestal</td>
<td>1,2%</td>
<td>4,7%</td>
<td>0,0%</td>
<td>0,3%</td>
<td>6,2%</td>
<td>0,2%</td>
<td>6,5%</td>
</tr>
<tr>
<td>Cultivos permanentes arbóreos</td>
<td>0,1%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>1,6%</td>
<td>1,7%</td>
<td>0,4%</td>
<td>2,1%</td>
</tr>
<tr>
<td>Agroforestal</td>
<td>0,3%</td>
<td>0,2%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,5%</td>
<td>0,5%</td>
<td>1,0%</td>
</tr>
<tr>
<td>Cultivos transitorios</td>
<td>0,3%</td>
<td>0,2%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,5%</td>
<td>0,0%</td>
<td>0,5%</td>
</tr>
<tr>
<td>Minería</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Sin uso</td>
<td>11,2%</td>
<td>19,3%</td>
<td>0,0%</td>
<td>0,4%</td>
<td>30,8%</td>
<td>2,7%</td>
<td>33,5%</td>
</tr>
<tr>
<td>Natural</td>
<td>9,7%</td>
<td>18,4%</td>
<td>0,0%</td>
<td>0,2%</td>
<td>28,3%</td>
<td>1,2%</td>
<td>29,5%</td>
</tr>
<tr>
<td>Área protegida</td>
<td>1,1%</td>
<td>0,6%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>1,7%</td>
<td>0,0%</td>
<td>1,8%</td>
</tr>
<tr>
<td>Zonas acuáticas</td>
<td>0,2%</td>
<td>0,1%</td>
<td>0,0%</td>
<td>0,1%</td>
<td>0,4%</td>
<td>1,1%</td>
<td>1,5%</td>
</tr>
<tr>
<td>Asentamiento urbano</td>
<td>0,1%</td>
<td>0,1%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,2%</td>
<td>0,4%</td>
<td>0,6%</td>
</tr>
<tr>
<td>Infraestructura vial</td>
<td>0,1%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,1%</td>
<td>0,0%</td>
<td>0,2%</td>
</tr>
<tr>
<td>Infraestructura</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Total general</td>
<td>38,9%</td>
<td>53,0%</td>
<td>0,0%</td>
<td>2,5%</td>
<td>94,4%</td>
<td>5,6%</td>
<td>100,0%</td>
</tr>
</tbody>
</table>

La tabla 26 describe las estadísticas del grado de degradación química (salinización) con base en las clases de uso de las tierras, diferenciando áreas objeto de zonificación ambiental y áreas de frontera agrícola.

Tabla 26. Estadísticas grado de degradación química vs. frontera agrícola, bajo información nacional.

<table>
<thead>
<tr>
<th>CLASES DE USO</th>
<th>LEVE</th>
<th>MODERADO</th>
<th>FUERTE</th>
<th>EXTREMO</th>
<th>TOTAL salinización</th>
<th>SIN evidencia / No Suelo</th>
<th>TOTAL general</th>
</tr>
</thead>
<tbody>
<tr>
<td>Áreas objeto de zonificación ambiental</td>
<td>16,4%</td>
<td>20,8%</td>
<td>0,0%</td>
<td>0,3%</td>
<td>37,5%</td>
<td>1,7%</td>
<td>39,2%</td>
</tr>
<tr>
<td>Ganadería</td>
<td>3,7%</td>
<td>3,3%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>7,0%</td>
<td>0,4%</td>
<td>7,3%</td>
</tr>
<tr>
<td>Silvopastoril</td>
<td>3,1%</td>
<td>3,3%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>6,4%</td>
<td>0,1%</td>
<td>6,5%</td>
</tr>
<tr>
<td>Plantación forestal</td>
<td>0,8%</td>
<td>1,5%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>2,4%</td>
<td>0,0%</td>
<td>2,4%</td>
</tr>
<tr>
<td>Cultivos permanentes arbóreos</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,2%</td>
<td>0,2%</td>
<td>0,1%</td>
<td>0,3%</td>
</tr>
<tr>
<td>Agroforestal</td>
<td>0,1%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,1%</td>
<td>0,0%</td>
<td>0,2%</td>
</tr>
<tr>
<td>Cultivos transitorios</td>
<td>0,1%</td>
<td>0,1%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,2%</td>
<td>0,0%</td>
<td>0,2%</td>
</tr>
<tr>
<td>Minería</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Natural</td>
<td>7,4%</td>
<td>11,9%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>19,3%</td>
<td>0,5%</td>
<td>19,8%</td>
</tr>
<tr>
<td>Área protegida</td>
<td>1,1%</td>
<td>0,6%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>1,7%</td>
<td>0,0%</td>
<td>1,7%</td>
</tr>
<tr>
<td>Zonas acuáticas</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,1%</td>
<td>0,2%</td>
<td>0,2%</td>
</tr>
</tbody>
</table>
Evaluación de la degradación de las tierras a nivel local – San Juan Nepomuceno (Bolívar)

<table>
<thead>
<tr>
<th></th>
<th>0,1%</th>
<th>0,0%</th>
<th>0,0%</th>
<th>0,0%</th>
<th>0,1%</th>
<th>0,4%</th>
<th>0,5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asentamiento urbano</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infraestructura vial</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Infraestructura</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Frontera Agrícola</td>
<td>22,4%</td>
<td>32,3%</td>
<td>0,0%</td>
<td>2,2%</td>
<td>56,9%</td>
<td>4,0%</td>
<td>60,8%</td>
</tr>
<tr>
<td>Ganadería</td>
<td>11,7%</td>
<td>12,1%</td>
<td>0,0%</td>
<td>0,1%</td>
<td>23,9%</td>
<td>1,0%</td>
<td>24,9%</td>
</tr>
<tr>
<td>Silvopastoral</td>
<td>7,4%</td>
<td>9,8%</td>
<td>0,0%</td>
<td>0,1%</td>
<td>17,4%</td>
<td>0,4%</td>
<td>17,8%</td>
</tr>
<tr>
<td>Plantación forestal</td>
<td>0,4%</td>
<td>3,2%</td>
<td>0,0%</td>
<td>0,3%</td>
<td>3,9%</td>
<td>0,2%</td>
<td>4,1%</td>
</tr>
<tr>
<td>Cultivos permanentes</td>
<td>0,1%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>1,4%</td>
<td>1,5%</td>
<td>0,3%</td>
<td>1,8%</td>
</tr>
<tr>
<td>árboreos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agroforestal</td>
<td>0,2%</td>
<td>0,2%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,4%</td>
<td>0,5%</td>
<td>0,8%</td>
</tr>
<tr>
<td>Cultivos transitorios</td>
<td>0,2%</td>
<td>0,1%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,3%</td>
<td>0,0%</td>
<td>0,3%</td>
</tr>
<tr>
<td>Minería</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Natural</td>
<td>2,2%</td>
<td>6,6%</td>
<td>0,0%</td>
<td>0,2%</td>
<td>9,0%</td>
<td>0,6%</td>
<td>9,6%</td>
</tr>
<tr>
<td>Área protegida</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Zonas acuáticas</td>
<td>0,2%</td>
<td>0,1%</td>
<td>0,0%</td>
<td>0,1%</td>
<td>0,4%</td>
<td>0,9%</td>
<td>1,2%</td>
</tr>
<tr>
<td>Asentamiento urbano</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,1%</td>
<td>0,0%</td>
<td>0,1%</td>
</tr>
<tr>
<td>Infraestructura vial</td>
<td>0,1%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,1%</td>
<td>0,0%</td>
<td>0,1%</td>
</tr>
<tr>
<td>Infraestructura</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Total general</td>
<td>38,9%</td>
<td>53,0%</td>
<td>0,0%</td>
<td>2,5%</td>
<td>94,4%</td>
<td>5,6%</td>
<td>100,0%</td>
</tr>
</tbody>
</table>
Mapa 39. Mapa de degradación biológica por transformación del bioma, bajo información nacional.
La tabla 27 describe las estadísticas del grado de degradación biológica (transformación del bioma) con base en las clases de uso de las tierras.

Tabla 27. Estadísticas del grado de degradación biológica (transformación del bioma) con base en las clases de uso de las tierras, bajo información nacional.

<table>
<thead>
<tr>
<th>CLASES DE USO</th>
<th>DEGRADACIÓN BIOLÓGICA (TRANSFORMACIÓN DEL BIOMA)</th>
<th>Total transf. Bioma</th>
<th>Sin evidencia</th>
<th>Total general</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Leve</td>
<td>Moderado</td>
<td>Fuerte</td>
<td>Extremo</td>
</tr>
<tr>
<td>Con uso</td>
<td>0,0%</td>
<td>0,0%</td>
<td>10,3%</td>
<td>56,2%</td>
</tr>
<tr>
<td>Ganadería</td>
<td>0,0%</td>
<td>0,0%</td>
<td>5,8%</td>
<td>26,4%</td>
</tr>
<tr>
<td>Silvopastoril</td>
<td>0,0%</td>
<td>0,0%</td>
<td>2,6%</td>
<td>21,6%</td>
</tr>
<tr>
<td>Plantación forestal</td>
<td>0,0%</td>
<td>0,0%</td>
<td>1,3%</td>
<td>5,2%</td>
</tr>
<tr>
<td>Cultivos permanentes arbóreos</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>2,1%</td>
</tr>
<tr>
<td>Agroforestal</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,3%</td>
<td>0,6%</td>
</tr>
<tr>
<td>Cultivos transitorios</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,2%</td>
<td>0,3%</td>
</tr>
<tr>
<td>Minería</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Sin uso</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,8%</td>
</tr>
<tr>
<td>Natural</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Área protegida</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Zonas acuáticas</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Asentamiento urbano</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,6%</td>
</tr>
<tr>
<td>Infraestructura vial</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,2%</td>
</tr>
<tr>
<td>Infraestructura</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Total general</td>
<td>0,0%</td>
<td>0,0%</td>
<td>10,3%</td>
<td>56,9%</td>
</tr>
</tbody>
</table>

La tabla 28 describe las estadísticas del grado de degradación biológica (transformación del bioma) con base en las clases de uso de las tierras, diferenciando áreas objeto de zonificación ambiental y áreas de frontera agrícola.

Tabla 28. Estadísticas grado de degradación biológica vs. frontera agrícola, bajo información nacional.

<table>
<thead>
<tr>
<th>CLASES DE USO</th>
<th>DEGRADACIÓN BIOLÓGICA (TRANSFORMACIÓN DEL BIOMA)</th>
<th>Total transf. Bioma</th>
<th>Sin evidencia</th>
<th>Total general</th>
</tr>
</thead>
<tbody>
<tr>
<td>Áreas objeto de zonificación ambiental</td>
<td>Leve</td>
<td>Moderado</td>
<td>Fuerte</td>
<td>Extremo</td>
</tr>
<tr>
<td>Ganadería</td>
<td>0,0%</td>
<td>0,0%</td>
<td>5,9%</td>
<td>11,4%</td>
</tr>
<tr>
<td>Silvopastoril</td>
<td>0,0%</td>
<td>0,0%</td>
<td>2,9%</td>
<td>4,4%</td>
</tr>
<tr>
<td>Plantación forestal</td>
<td>0,0%</td>
<td>0,0%</td>
<td>1,8%</td>
<td>4,7%</td>
</tr>
<tr>
<td>Cultivos permanentes arbóreos</td>
<td>0,0%</td>
<td>0,0%</td>
<td>1,0%</td>
<td>1,4%</td>
</tr>
<tr>
<td>Agroforestal</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,1%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Cultivos transitorios</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,1%</td>
<td>0,1%</td>
</tr>
<tr>
<td>Minería</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Natural</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Área protegida</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Zonas acuáticas</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Asentamiento urbano</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,5%</td>
</tr>
</tbody>
</table>
Evaluación de la degradación de las tierras a nivel local – San Juan Nepomuceno (Bolívar)

<table>
<thead>
<tr>
<th>Infraestructura vial</th>
<th>0,0%</th>
<th>0,0%</th>
<th>0,0%</th>
<th>0,0%</th>
<th>0,0%</th>
<th>0,0%</th>
<th>0,0%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infraestructura</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Frontera Agrícola</td>
<td>0,0%</td>
<td>0,0%</td>
<td>4,4%</td>
<td>45,5%</td>
<td>49,9%</td>
<td>10,9%</td>
<td>60,8%</td>
</tr>
<tr>
<td>Ganadería</td>
<td>0,0%</td>
<td>0,0%</td>
<td>2,9%</td>
<td>21,9%</td>
<td>24,9%</td>
<td>0,0%</td>
<td>24,9%</td>
</tr>
<tr>
<td>Silvopastoral</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,8%</td>
<td>17,0%</td>
<td>17,8%</td>
<td>0,0%</td>
<td>17,8%</td>
</tr>
<tr>
<td>Plantación forestal</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,3%</td>
<td>3,8%</td>
<td>4,1%</td>
<td>0,0%</td>
<td>4,1%</td>
</tr>
<tr>
<td>Cultivos permanentes arbóreos</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>1,8%</td>
<td>1,8%</td>
<td>0,0%</td>
<td>1,8%</td>
</tr>
<tr>
<td>Agroforestal</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,2%</td>
<td>0,6%</td>
<td>0,8%</td>
<td>0,0%</td>
<td>0,8%</td>
</tr>
<tr>
<td>Cultivos transitorios</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,1%</td>
<td>0,2%</td>
<td>0,3%</td>
<td>0,0%</td>
<td>0,3%</td>
</tr>
<tr>
<td>Minería</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Natural</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>9,6%</td>
<td>9,6%</td>
</tr>
<tr>
<td>Área protegida</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Zonas acuáticas</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>1,2%</td>
</tr>
<tr>
<td>Asentamiento urbano</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,1%</td>
<td>0,1%</td>
<td>0,0%</td>
<td>0,1%</td>
</tr>
<tr>
<td>Infraestructura vial</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,1%</td>
<td>0,1%</td>
<td>0,0%</td>
<td>0,1%</td>
</tr>
<tr>
<td>Infraestructura</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Total general</td>
<td>0,0%</td>
<td>0,0%</td>
<td>10,3%</td>
<td>56,9%</td>
<td>67,2%</td>
<td>32,8%</td>
<td>100,0%</td>
</tr>
</tbody>
</table>

Con lo anterior se identifica el estado de la degradación de las tierras en el área piloto a nivel local con base en la información nacional, evidenciando una magnitud de degradación física del 82,7% y una severidad del 6,8%; una magnitud de degradación química del 94,4% y una severidad del 2,5%; y una magnitud de degradación biológica del 67,2% y una severidad del mismo porcentaje que la magnitud. La figura 38 describe la magnitud y severidad de la degradación de las tierras en el área piloto, bajo información nacional.

La magnitud se expresa como el porcentaje del área con algún grado de degradación, mientras que la severidad se expresa como el porcentaje del área con grados de degradación fuertes y extremos.

Figura 38. Magnitud y severidad de la degradación de las tierras en el área piloto, bajo información nacional.
De esta manera, se evidencia que el municipio de San Juan Nepomuceno (área piloto) presenta problemas de degradación tanto física, química y biológica, pero con oportunidades de mitigar el desarrollo de la misma, con el principal objetivo de detener la degradación y comenzar las mejoras de los recursos y sus funciones.

5.2.2. Evaluación de la degradación, bajo MapQuest (WOCAT/LADA).

Teniendo en cuenta la determinación de la degradación de las tierras por cada Sistema de Uso de las Tierras (SUT), desarrollada bajo la herramienta de mapeo por cuestionarios (MapQuest) metodología WOCAT/LADA (figura 39) la cual permite el aporte de los especialistas por medio del taller de expertos. Se identificaron los indicadores de estado, presión e impacto de la degradación de las tierras en el área piloto.

La experiencia en la recolección de datos en el taller de expertos sobre la degradación, ha mostrado que existe una tendencia a la sobreestimación de la extensión y el grado de la degradación de las tierras. Los juicios objetivos se deben realizar en la medida de lo posible. Es por esto la necesidad de contar y utilizar los insumos nacionales (escala 1:100.000) respecto a la degradación en el país.

Figura 39. Degradación de las tierras por cada SUT. Paso 3 del cuadro metodológico para la evaluación de la degradación de las tierras.

5.2.2.1. Indicadores de presión.

Bajo el mapeo por cuestionarios y con el aporte de los especialistas en el taller de expertos, se identificaron los indicadores de presión determinados por las causas directas e indirectas. El indicador de presión da respuesta al ¿Por qué? se está presentando la degradación de las tierras.

¿Por qué se está presentando dicha degradación en las tierras? Para esto el aporte de los especialistas en el taller de expertos fue de gran interés arrojando ciertas causas directas e indirectas entendidas como indicadores de presión. Las causas directas (mapa 40) más representativas son:
• Manejo del suelo (s1, prácticas inapropiadas en el manejo del suelo; s2, realización de cultivos en suelos no aptos).
• Manejo del cultivo (c1, falta o insuficiencia del mantenimiento de las medidas de conservación; c2, reducción del período de barbecho en la rotación de cultivos; c4, aplicación inapropiada de fertilizantes/abonos; c5, maquinaria pesada; c7, aradas).
• Deforestación y remoción de la vegetación natural (f1, forestación comercial a gran escala; f4, conversión a otros usos de la tierra; f5, construcción de caminos; f6, otros).
• Sobrepastoreo (g1, número excesivo de cabezas de ganado; g2, pisoteo de animales a lo largo de los caminos).
• Causas (q1, aplicación excesiva de fertilizantes, pesticidas).
• Alteración de los ciclos hidrológicos (w1, tasas de infiltración bajas/aumento de las superficies con escorrentías).
• Causas naturales (n1, topografía/relieves extremos; n5, sequías).

La información socioeconómica es crucial, en general, para entender por qué ocurre la degradación de las tierras. Las causas indirectas, son causas subyacentes, desde las fuerzas motrices a las causas directas de la degradación de las tierras. Las siguientes son las causas indirectas más representativas:

• Tenencia de la Tierra: La mala definición sobre la seguridad de la tenencia / los derechos de acceso pueden llevar a la degradación de la tierra, como también las inversiones individuales en la manutención y mejora pueden ser llevadas a cabo por otros y por los usuarios de la tierra.
• Pobreza / riqueza: Las personas de bajos recursos no pueden afrontar las inversiones en prácticas de conservación de los recursos, por lo tanto, en cierta medida ellos continúan utilizando prácticas agrícolas inadecuadas (como el arado de tierras en colinas y el sobrepastoreo), las que a su vez generan un aumento de la degradación de la tierra y empeoran la pobreza.
• Educación, acceso al conocimiento y servicios de apoyo: La inversión en capital humano es una de las claves para la disminución de la pobreza (y, por lo tanto, de las prácticas de conservación de la tierra). La educación a los usuarios de la tierra tiende más hacia la adopción de nuevas tecnologías. Los usuarios de la tierra con mejor información generalmente tienen mejores rendimientos en sus tierras.
• Gobernanza / Institucionalidad: Las leyes y sus aplicaciones, la organización, la colaboración y el apoyo, las intervenciones inducidas por el gobierno pueden establecer la escena y ser los conductores indirectos para la implementación de las intervenciones en conservación.

Del área piloto, el 33,5% cuenta con áreas que no son agropecuarias, como son las áreas protegidas, los asentamientos urbanos, la infraestructura, la minería, las zonas naturales, acuáticas y pantanosas. Por lo tanto estas zonas no son sujetas a la evaluación de la degradación de las tierras.

El 17,5% del área piloto presenta prácticas inapropiadas en el manejo del suelo (s1), conversión a otros usos de la tierra (f4), número excesivo de cabezas de ganado (g1), tasas de infiltración bajas / aumento de las superficies con escorrentías (w1). Causas asociadas especialmente a los sistemas de uso de las tierras de ganadería.
El 16,2% del área piloto presenta prácticas inapropiadas en el manejo del suelo (s1), número excesivo de cabezas de ganado (g1). Causas asociadas especialmente a los sistemas de uso de las tierras silvopastoril.

El 11,4% del área piloto presenta prácticas inapropiadas en el manejo del suelo (s1), conversión a otros usos de la tierra (f4), número excesivo de cabezas de ganado (g1) y causas naturales como por topografía / relieve extremos (n1) y sequías (n5). Causas asociadas especialmente a los sistemas de uso de las tierras de ganadería.

El restante 21,4% del área piloto está asociado bajo otros sistemas de uso de las tierras como la plantación forestal, los cultivos permanentes y los sistemas agroforestales. Con causas como falta o insuficiencia del mantenimiento de las medidas de conservación (c1), reducción del período de barbecho en la rotación de cultivos (c2), aplicación inapropiada de fertilizantes / abonos (c4), maquinaria pesada (c5), aplicación excesiva de fertilizantes, pesticidas (q1), forestación comercial a gran escala (f1), entre otras.

La figura 40, describe el porcentaje de las causas directas presentes en el área piloto.

Figura 40. Gráfico porcentual de las causas directas de la degradación en el área piloto, bajo MapQuest.
Mapa 40. Mapa de las causas directas de la degradación de las tierras, bajo MapQuest.
Los indicadores de presión directos (causas directas) son varios tipos de actividades humanas y causas naturales que pueden conducir a la degradación de la tierra. El énfasis en el inventario de la degradación es aquel que esta inducido por los humanos, pero a veces la degradación natural también necesita de la aplicación de medidas. Mientras que los indicadores de presión indirectos (causas indirectas) son causas subyacentes, desde las fuerzas motrices a las causas directas de la degradación de la tierra. La información socioeconómica es crucial, en general, para entender por qué ocurre la degradación de la tierra.

5.2.2.2. Indicadores de estado.

Con el aporte de los especialistas en el taller de expertos, se identificaron los indicadores de estado de la degradación de las tierras por cada SUT, determinados por el tipo, grado y tasa. Estos indicadores dan respuestas al ¿Qué?, ¿Dónde? y ¿Cómo? se encuentra la degradación de las tierras.

Respecto a los tipos de degradación de las tierras (mapa 41), se identificaron los siguientes:

- Erosión hídrica (Wt, pérdida de las capas superficiales del suelo/erosión de la superficie; Wo, efectos de la degradación fuera del sitio).
- Deterioro químico del suelo (Cn, disminución de la fertilidad y reducción del contenido de materia orgánica; Cp, contaminación del suelo).
- Deterioro físico del suelo (Pc, compactación).
- Degradación biológica (Bh, pérdida de hábitats; Bf, efectos perjudiciales del fuego; Bs, calidad y composición de las especies / disminución de la diversidad).

Del área piloto, el 33,5% cuenta con áreas que no son agropecuarias, como son las áreas protegidas, los asentamientos urbanos, la infraestructura, la minería, las zonas naturales, acuáticas y pantanosas. Por lo tanto estas zonas no son sujetas a la evaluación de la degradación de las tierras.

El 32,7% del área piloto presenta degradaciones por disminución de la fertilidad y reducción del contenido de materia orgánica (Cn-deterioro químico), compactación (Pc-deterioro físico) y pérdida de hábitats (Bh-deterioro biológico), tipos de degradaciones asociados especialmente a los sistemas de uso de las tierras de ganadería.

El 15,6% del área piloto presenta degradaciones por pérdida de las capas superficiales del suelo (Wt-erosión hídrica), disminución de la fertilidad y reducción del contenido de materia orgánica (Cn-deterioro químico) y compactación (Pc-deterioro físico), tipos de degradaciones asociados especialmente a los sistemas de uso de las tierras silvopastoril.

El 7,9% del área piloto presenta degradaciones por pérdida de las capas superficiales del suelo (Wt-erosión hídrica), contaminación del suelo (Cp-deterioro químico) y compactación (Pc-deterioro físico), tipos de degradaciones asociados especialmente a los sistemas de uso de las tierras silvopastoril.

El restante 10,3% del área piloto está asociado bajo otros sistemas de uso de las tierras como la plantación forestal, los cultivos permanentes, transitorios y los sistemas agroforestales.
La figura 41, describe el porcentaje de las combinaciones de los tipos de degradación de las tierras presentes en el área piloto.

Figura 41. Gráfico porcentual de los tipos de degradación en el área piloto, bajo MapQuest.
Evaluación de la degradación de las tierras a nivel local – San Juan Nepomuceno (Bolívar)

Mapa 41. Mapa de los tipos de degradación de las tierras, bajo MapQuest.
Respecto a los grados de degradación de las tierras (mapa 42), se identificaron los siguientes:

- **Leve**, existen algunas indicaciones de degradación, pero el proceso aún se encuentra en una etapa inicial. Este puede ser fácilmente frenado y el daño puede ser reparado con un menor esfuerzo.
- **Moderado**, la degradación es obvia, pero el control y la rehabilitación completa de la tierra aún es posible con un esfuerzo considerable.
- **Fuerte**, signos evidentes de degradación. Los cambios en las propiedades de la tierra son significativas y de muy difícil restauración dentro de un límite de tiempo razonable.

Del área piloto, el 33,5% cuenta con áreas que no son agropecuarias, como son las áreas protegidas, los asentamientos urbanos, la infraestructura, la minería, las zonas naturales, acuáticas y pantanosas. Por lo tanto estas zonas no son sujetas a la evaluación de la degradación de las tierras.

Para el 32,2% del área piloto se determinó que presenta degradaciones con grado fuerte, asociado a los sistemas de uso de las tierras de ganadería.

Para el 25,2% del área piloto se determinó que presenta degradaciones con grado moderado, asociado especialmente a los sistemas de uso de las tierras silvopastoril, plantación forestal y cultivos permanentes.

Para el 9,1% del área piloto se determinó que presenta degradaciones con grado leve, asociado especialmente a los sistemas de uso de las tierras silvopastoril y agroforestal.

La figura 42, describe el porcentaje de los grados de degradación de las tierras presentes en el área piloto.

![Gráfico porcentual de los grados de degradación en el área piloto, bajo MapQuest.](image-url)
Mapa 42. Mapa de los grados de degradación de las tierras, bajo MapQuest.
5.2.2.3. Indicadores de impacto.

Bajo el mapeo por cuestionarios y con el aporte de los especialistas en el taller de expertos, se identificaron los indicadores de impacto sobre los servicios ecosistémicos, adicionales a los indicadores de presión y estado. El indicador de impacto da respuesta a ¿Quién? o en qué afecta la degradación de las tierras. El principal impacto a ser evaluado aquí es el efecto sobre los servicios del ecosistema, tal como se indica en la Evaluación de los Ecosistemas del Milenio (Instituto de los Recursos Mundiales, 2005).

Para esto el aporte de los especialistas en el taller de expertos fue de gran interés, determinando impactos como de tipo de servicios productivos, de servicios ecológicos y de servicios socio-culturales. Los impactos (mapa 43) más representativos son:

- Servicios productivos; P1, producción (de animales / plantas incluyendo la cantidad y calidad de biomasa para energía) y riesgo productivo.
- Servicios ecológicos; E2, situación de la materia orgánica y E3, cobertura del suelo (vegetación, mantillos, etc).
- Servicios socio-culturales; S4, seguridad alimentaria, salud y pobreza.

Del área piloto, el 33,5% cuenta con áreas que no son agropecuarias, como son las áreas protegidas, los asentamientos urbanos, la infraestructura, la minería, las zonas naturales, acuáticas y pantanosas. Por lo tanto estas zonas no son sujetas a la evaluación de la degradación de las tierras.

El 20,1% del área piloto presenta impactos sobre los servicios ecosistémicos, como impacto de producción y riesgo productivo (P1), impacto sobre el ciclo del agua / régimen hidrológico (E1), impacto sobre la situación de la materia orgánica (E2), impacto sobre la cobertura del suelo (E3), impacto sobre la estructura del suelo (E4), impacto sobre el ciclo de los nutrientes (N, P, K) y ciclo del carbón (E5), impacto sobre la biodiversidad (E7) e impacto sobre los paisajes espirituales, estéticos, culturales y patrimonios valorados, recreación y turismo (S1). La degradación de las tierras contribuye negativamente (10-50%) a los cambios en los SE. Presentándose especialmente en el sistema de uso de las tierras de ganadería.

El 15,6% del área piloto presenta impactos sobre los servicios ecosistémicos, como impacto de producción y riesgo productivo (P1), impacto sobre la situación de la materia orgánica (E2) e impacto sobre la biodiversidad (E7). La degradación de las tierras contribuye negativamente (10-50%) a los cambios en los SE. Presentándose especialmente en el sistema de uso de las tierras silvopastoril.

El 11,4% del área piloto presenta impactos sobre los servicios ecosistémicos, como impacto de producción y riesgo productivo (P1), impacto sobre el ciclo del agua / régimen hidrológico (E1), impacto sobre la biodiversidad (E7) e impacto sobre la seguridad alimentaria, salud y pobreza (S4). La degradación de las tierras contribuye negativamente (más del 50%) a los cambios en los SE. Adicionalmente impacto sobre la situación de la materia orgánica (E2), impacto sobre la estructura del suelo (E4), impacto sobre el ciclo de los nutrientes (N, P, K) y ciclo del carbón (E5), impacto sobre el aumento de las emisiones de los gases de efecto invernadero (E8) e impacto sobre conflictos (S3).
degradación de las tierras contribuye negativamente (10-50%) a los cambios en los SE. Presentándose especialmente en el sistema de uso de las tierras de ganadería.

El restante 19,3% del área piloto está asociado a impactos bajo otros sistemas de uso de las tierras como la plantación forestal, los cultivos permanentes, y los sistemas agroforestales.

La figura 43, describe el porcentaje de las combinaciones de impactos sobre los servicios ecosistémicos presentes en el área piloto.

![Figura 43. Gráfico porcentual de los impactos sobre los servicios ecosistémicos en el área piloto, bajo MapQuest.](image)
Evaluación de la degradación de las tierras a nivel local – San Juan Nepomuceno (Bolívar)

Mapa 43. Mapa de impactos sobre los servicios ecosistémicos, bajo MapQuest.
5.3. Conservación de las tierras.

Teniendo en cuenta la determinación de la degradación de las tierras por cada Sistema de Uso de las Tierras (SUT), desarrollados en los capítulos anteriores, bajo la herramienta de mapeo por cuestionarios (MapQuest) metodología WOCAT/LADA. Se procedió a identificar la conservación de las mismas por medio de las tecnologías más utilizadas concentradas en grupos de conservación, determinando así indicadores de respuesta a la degradación en el área piloto. La figura 44 representa el paso 4 (Q4) de la conservación de las tierras dentro de la herramienta de mapeo (MapQuest) para la evaluación de la degradación de las tierras, representada en la figura 31, capítulo 5.

![Diagrama Q4. Conservación de la Tierra (Indicadores de Respuesta)](image)

La experiencia en la recolección de datos en el taller de expertos sobre la degradación y el MST, ha mostrado que existe una tendencia a sobreestimar la extensión y la efectividad de la conservación.

Bajo el mapeo por cuestionarios y con el aporte de los especialistas en el taller de expertos, se identificaron los indicadores de respuesta determinados por las principales tecnologías utilizadas en el área piloto, las tecnologías agrupadas en grupos de conservación, el área (porcentaje) de ocupación de la tecnología en la unidad del SUT, la degradación que aborda la tecnología, la efectividad de la implementación de la tecnología, el impacto de la tecnología sobre los servicios ecosistémicos y el período de implementación de la tecnología.

Con lo anterior se logra determinar si las tecnologías como las prácticas de manejo de las tierras previenen o aportan a la degradación de las mismas.

Para esto se zonificaron los grupos de conservación existentes en el área piloto (mapa 44), identificando los grupos más representativos:
Evaluación de la degradación de las tierras a nivel local – San Juan Nepomuceno (Bolívar)

- **RO, Sistemas de rotación / cambio de cultivos / barbechos / tala y quema.**

Este sistema se caracteriza además de la rotación de diferentes manejos de la tierra como una producción intensiva de granos de pocos años seguida por un período de un uso poco intensivo que permite el rebrote natural (barbecho), por la resiembra de pasturas, leguminosas, árboles, etc. y luego por un uso intensivo y una limpieza de la vegetación. Los cambios en los cultivos es un sistema agrícola en donde las parcelas se cultivan temporalmente y luego se abandonan. Este sistema a menudo implica la limpieza de una parte de la tierra seguida por varios años de cosechas de madera o cultivos hasta que el suelo pierde fertilidad. Una vez que la tierra se vuelve inadecuada para la producción de granos, se deja para que sea recuperado por la vegetación natural, o a veces se convierte en el largo plazo en diferentes prácticas agrícolas cíclicas. La tala y la quema hacen referencia al corte y al quemado de la forestación o bosques para permitir actividades agrícolas o para establecer pasturas para el ganado o para otra variedad de propósitos.

- **AF, Agrosilvicultura (principalmente vegetal, combinada con la agricultura).**

La agrosilvicultura describe el sistema del uso de la tierra en donde los árboles crecen junto con cultivos agrícolas, pasturas o ganado – y por lo general ambas interacciones ecológicas y económicas se dan entre los diferentes componentes del sistema. Hay un amplio rango cubierto: desde los cinturones urbanos, a los árboles de café, a los múltiples pisos de cultivos.

- **AP, Reforestación y protección forestal.**

La reforestación, el mejoramiento forestal, la protección contra incendios, el mejor manejo del uso del bosque y de la tala de los árboles de este grupo.

- **GR, Manejo de las tierras con pasturas (prácticas de manejo con medidas agronómicas y vegetativas asociadas).**

El manejo mejorado de las tierras con pasturas se refiere al cambio en el control y la regulación de las presiones del pastoreo. Está asociado con una reducción inicial de la intensidad del pastoreo a través del cercado, seguido tanto por la rotación de pasturas, o por el “corte y traslado” del forraje, el mejoramiento vegetal y cambios en el manejo.

Del área piloto, el 33,5% cuenta con áreas que no son agropecuarias, como son las áreas protegidas, los asentamientos urbanos, la infraestructura, la minería, las zonas naturales, acuáticas y pantanosas. Por lo tanto estas zonas no son sujetas a la evaluación de la degradación de las tierras.

El 39,1% del área piloto agrupa las tecnologías en grupos de conservación **RO** (Sistemas de rotación / cambio de cultivos / barbechos / tala y quema). Tecnologías asociadas especialmente a los sistemas de uso de las tierras de plantación forestal y de ganadería.

El 16,2% del área piloto agrupa las tecnologías en grupos de conservación **AF** (Agrosilvicultura). Tecnologías asociadas especialmente a los sistemas de uso de las tierras silvopastoril.
El 7,9% del área piloto agrupa las tecnologías en grupos de conservación AF (Agrosilvicultura), AP (Reforestación y protección forestal), GR (Manejo de las tierras con pasturas) y WH (Captación del agua). Tecnologías asociadas especialmente a los sistemas de uso de las tierras silvopastoril.

El 2,1% del área piloto agrupa las tecnologías en grupos de conservación AP (Reforestación y protección forestal). Tecnologías asociadas especialmente a los sistemas de uso de las tierras de cultivos permanentes arbóreos.

El restante 1,2% del área piloto está asociado bajo otros sistemas de uso de las tierras como el agroforestal. Con grupos de conservación como AP (Reforestación y protección forestal), SA (Aguas subterráneas / regulación de la salinidad / uso eficiente del agua) y PR (Protección contra los riesgos naturales).

La figura 45, describe el porcentaje de los grupos de conservación de las tierras presentes en el área piloto.

![Figura 45. Gráfico porcentual de los grupos de conservación de las tierras en el área piloto, bajo MapQuest.](image_url)
Mapa 44. Mapa de los grupos de conservación de las tierras, bajo MapQuest.
Respecto a la efectividad de las medidas de conservación, se evidencia un alto porcentaje 40,6% de efectividad baja, un 25,1% de efectividad moderada y un 0,7% de efectividad alta. Teniendo en cuenta que el 33,5% del área piloto cuenta con zonas que no son sujetas a la evaluación de la degradación de las tierras, como son las áreas protegidas, los asentamientos urbanos, la infraestructura, la minería, las zonas naturales, acuáticas y pantanosas. La figura 46, describe el porcentaje de la efectividad de las medidas de conservación de las tierras en el área piloto.

La “Efectividad” (CDE/WOCAT FAO/LADA ISRIC, 2008) de las medidas de conservación está definida en términos de cuánto se reduce el grado de degradación, o cuán bien se ejecuta / mantiene la implementación de las tecnologías de MST. Su calificación es la siguiente:

- 4, Muy altas: Las medidas no sólo controlan los problemas de degradación de forma apropiada, sino que también mejoran la situación en comparación con la situación existente antes de que la degradación ocurra.
- 3, Altas: Las medidas de control a los problemas de degradación de la tierra son apropiadas.
- 2, Moderadas: Las medidas son aceptables para las situaciones dadas.
- 1, Bajas: Las medidas requieren una mejora y una adaptación local en pos de reducir la degradación de la tierra a límites aceptables. Se necesita de esfuerzos adicionales para alcanzar un estándar “alto”.

Respecto al impacto de las tecnologías sobre los servicios ecosistémicos, los más representativos con un impacto positivo bajo, son:

- Servicios productivos; P1, producción (de animales / plantas incluyendo la cantidad y calidad de biomasa para energía) y riesgo productivo.
Servicios ecológicos; E3, cobertura del suelo (vegetación, mantillos, etc.), E4, estructura del suelo y E7, biodiversidad.

Del área piloto, el 33,5% cuenta con áreas que no son agropecuarias, como son las áreas protegidas, los asentamientos urbanos, la infraestructura, la minería, las zonas naturales, acuáticas y pantanosas. Por lo tanto estas zonas no son sujetas a la evaluación de la degradación de las tierras.

El 20,1% del área piloto presenta impactos sobre los servicios ecosistémicos, como impacto de producción y riesgo productivo (P1), impacto sobre la estructura del suelo (E4) e impacto sobre la biodiversidad (E7). Las tecnologías contribuyen positivamente (0-10%) a los cambios en los SE. Presentándose especialmente en los grupos de conservación RO (Sistemas de rotación / cambio de cultivos / barbechos / tala y quema).

El 16,2% del área piloto presenta impactos sobre los servicios ecosistémicos, como impacto de producción y riesgo productivo (P1). Las tecnologías contribuyen positivamente (10-50%) a los cambios en los SE. Presentándose especialmente en los grupos de conservación AF (Agrosilvicultura).

El 12,1% del área piloto presenta impactos sobre los servicios ecosistémicos, como impacto sobre la estructura del suelo (E4), impacto sobre la biodiversidad (E7) e impacto sobre conflictos (S3). Las tecnologías contribuyen positivamente (0-10%) a los cambios en los SE. Presentándose especialmente en los grupos de conservación RO (Sistemas de rotación / cambio de cultivos / barbechos / tala y quema).

El restante 18,1% del área piloto está asociado en su gran mayoría a impactos de servicios ecológicos.

La figura 47, describe el porcentaje de los impactos de las tecnologías sobre los servicios ecosistémicos presentes en el área piloto.

Figura 47. Gráfico porcentual de los impactos de las tecnologías sobre los servicios ecosistémicos en el área piloto, bajo MapQuest.
5.4. Recomendaciones de expertos.

Teniendo en cuenta la identificación de la degradación de las tierras por cada Sistema de Uso de las Tierras (SUT), como la conservación de las mismas desarrolladas en los capítulos anteriores, bajo la herramienta de mapeo por cuestionarios (MapQuest) metodología WOCAT/LADA. Se procedió a determinar las recomendaciones de expertos referidas a las intervenciones sobre cómo abordar la degradación en el área piloto. La figura 48 representa el paso 5 (Q5) de las recomendaciones dentro de la herramienta de mapeo (MapQuest) para la evaluación de la degradación de las tierras, representada en la figura 31, capítulo 5.

![Q5. Recomendaciones de Expertos](image)

Figura 48. Recomendaciones de expertos. Paso 5 del cuadro metodológico para la evaluación de la degradación de las tierras.

Bajo el mapeo por cuestionarios y con el aporte de los especialistas en el taller de expertos, se determinaron las recomendaciones de expertos referidas a las intervenciones sobre cómo abordar la degradación en el área piloto (mapa 45).

Del área piloto, el 33,5% cuenta con áreas que no son agropecuarias, como son las áreas protegidas, los asentamientos urbanos, la infraestructura, la minería, las zonas naturales, acuáticas y pantanosas. Por lo tanto estas zonas no son sujetas a la evaluación de la degradación de las tierras.

Para el 32,2% del área piloto se recomendó rehabilitar las tierras cambiando el uso de ganadería a agrosilvopastoril.

Para el 25,4% del área piloto se recomendó mitigar la degradación de las tierras mejorando las prácticas de manejo de las mismas.

Para el 8,9% del área piloto se recomendó seguir previniendo la degradación de las tierras con prácticas de manejo sostenible de las mismas.

La figura 49, describe el porcentaje de las recomendaciones de expertos referidas a las intervenciones sobre cómo abordar la degradación en el área piloto.
La tabla 29, identifica los usos sugeridos como propuesta dentro de las recomendaciones de expertos referidas a las intervenciones para abordar la degradación de las tierras en el área piloto.

Tabla 29. Sistemas de uso de las tierras sugeridos dentro de las recomendaciones de expertos para el área piloto.

<table>
<thead>
<tr>
<th>(P) PREVENCIÓN</th>
<th>8,9%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agroforestal semiárido quebrado</td>
<td>0,5%</td>
</tr>
<tr>
<td>Agroforestal semihúmedo quebrado</td>
<td>0,5%</td>
</tr>
<tr>
<td>Agrosilvopastoril semihúmedo quebrado</td>
<td>7,9%</td>
</tr>
<tr>
<td>(M) MITIGACIÓN</td>
<td></td>
</tr>
<tr>
<td>Agrosilvopastoril semiárido quebrado</td>
<td>25,4%</td>
</tr>
<tr>
<td>Cultivo permanente semiárido ondulado a plano</td>
<td>1,9%</td>
</tr>
<tr>
<td>Cultivo permanente semiárido quebrado</td>
<td>0,1%</td>
</tr>
<tr>
<td>Cultivos transitorios semiárido quebrado</td>
<td>0,1%</td>
</tr>
<tr>
<td>Cultivos transitorios semihúmedo quebrado</td>
<td>0,4%</td>
</tr>
<tr>
<td>Silvopastoril semiárido ondulado a plano</td>
<td>0,6%</td>
</tr>
<tr>
<td>Silvopastoril semiárido quebrado</td>
<td>15,6%</td>
</tr>
<tr>
<td>Silvopastoril semihúmedo ondulado a plano</td>
<td>0,2%</td>
</tr>
<tr>
<td>(R) REHABILITACIÓN</td>
<td></td>
</tr>
<tr>
<td>Agrosilvopastoril semiárido ondulado a plano</td>
<td>2,6%</td>
</tr>
<tr>
<td>Agrosilvopastoril semiárido quebrado</td>
<td>17,5%</td>
</tr>
<tr>
<td>Agrosilvopastoril semihúmedo ondulado a plano</td>
<td>0,7%</td>
</tr>
<tr>
<td>Agrosilvopastoril semihúmedo quebrado</td>
<td>11,4%</td>
</tr>
<tr>
<td>N/A</td>
<td>33,5%</td>
</tr>
<tr>
<td>N/A</td>
<td>33,5%</td>
</tr>
<tr>
<td>Total general</td>
<td>100,0%</td>
</tr>
</tbody>
</table>
Evaluación de la degradación de las tierras a nivel local – San Juan Nepomuceno (Bolívar)

Mapa 45. Mapa de las recomendaciones de expertos, bajo MapQuest.
6. ANÁLISIS DE RESULTADOS

Con el objeto de evaluar la degradación de las tierras en el área piloto de San Juan Nepomuceno (Bolívar), se desarrolló la herramienta de mapeo por cuestionarios (MapQuest) bajo la metodología de WOCAT/LADA, la cual permite identificar a partir de los usos de las tierras los indicadores de presión, estado, impacto y respuestas a la degradación de las tierras, más unas recomendaciones de expertos referidas a las intervenciones sobre cómo abordar la degradación en el área piloto.

Para lo anterior, se generó el mapa de usos de las tierras a partir de la interpretación de la cobertura con temporalidad de enero de 2018 y resolución espacial de 10 metros, adicionando las variables de zonificación climática y relieve. Con la zonificación de los sistemas de usos de las tierras ya validada tanto en campo como en talleres de expertos, se determinaron los tipos y grados de degradación bajo cada sistema de uso de las tierras (indicadores de estado), las causas tanto directas como indirectas de la degradación (indicadores de presión), los impactos sobre los servicios ecosistémicos tanto productivos, ecológicos y socio-culturales (indicadores de impacto), las tecnologías y prácticas de manejo de las tierras (indicadores de respuesta) y las recomendaciones de expertos.

Del área piloto, el 33,5% cuenta con áreas que no son agropecuarias, como son las áreas protegidas, los asentamientos urbanos, la infraestructura, la minería, las zonas naturales, acuáticas y pantanosas. Por lo tanto estas zonas no son sujetas a la evaluación de la degradación de las tierras.

Determinados los usos de las tierras y la degradación de las mismas en el área piloto, según resultados compilados en el capítulo 5, se describe el siguiente análisis recopilado del desarrollo del mapeo por cuestionarios de expertos:

1. El área piloto, presenta en su gran mayoría del territorio usos de ganadería y silvopastoriles, con un 32,2% y 24,3% respectivamente. De los cuales el 24,9% y 17,8% respectivamente se presenta dentro de la frontera agrícola (UPRA, 2017).

 Las zonas en donde se presentan estos usos de suelo, son zonas de clima cálido seco que ocupan las colinas y lomas del paisaje de lomerío. El relieve es ligeramente ondulado a fuertemente quebrado, con pendientes 12-25-50%; están afectadas por erosión severa y muchos movimientos en masa (pata de vaca, terraceras, reptación). Los suelos se han originado de areniscas y arcillolitas con inclusiones de gravilla y calizas; los suelos son de bien a excesivamente bien drenados, muy superficiales, limitados por capas gravillosas; texturas moderadamente finas y fertilidad alta.

 Las principales limitaciones se deben a la erosión severa, alta susceptibilidad a los movimientos en masa y presencia de capas gravillosas. Estas tierras no tienen aptitud agropecuaria y se deben dedicar a la silvicultura, recuperación y protección del hábitat con prácticas de reforestación con especies protectoras-productoras (acacio, melina), construcción de barreras vivas, control de cărcavas y protección de drenajes naturales.
Los sistemas de uso de ganadería se identifican en su gran mayoría en clima cálido semiárido en terrenos moderadamente quebrados (13,8%) y en clima cálido semihúmedo en terrenos moderada y fuertemente quebrados (11,4%).

Los corregimientos que cuentan con mayor presencia de sistemas de uso de ganadería son, La Haya, San José del Peñón y San Cayetano. El corregimiento de La Haya cuenta con sistemas de ganadería en clima cálido semihúmedo en terrenos moderada y fuertemente quebrados, el corregimiento San José del Peñón cuenta con sistemas de ganadería en clima cálido semiárido en terrenos moderadamente quebrados, mientras que el corregimiento de San Cayetano comparte ambos de los sistemas de uso mencionados anteriormente.

Los sistemas de uso silvopastoril se identifican en su gran mayoría en clima cálido semiárido en terrenos moderados y fuertemente quebrados (10,6%) y en clima cálido semihúmedo en terrenos moderada y fuertemente quebrados (6,2%).

Los corregimientos que cuentan con mayor presencia de sistemas de uso silvopastoril son, San Cayetano, San José del Peñón y La Haya. El corregimiento de La Haya cuenta con sistemas silvopastoriles en clima cálido semihúmedo en terrenos moderada y fuertemente quebrados, el corregimiento San José del Peñón cuenta con sistemas silvopastoriles en clima cálido semiárido en terrenos moderada y fuertemente quebrados, mientras que el corregimiento de San Cayetano comparte ambos de los sistemas de uso mencionados anteriormente.

El 6,5% del territorio cuenta con usos forestales plantados con fines comerciales (plantación de Teca y Pino). De los cuales el 4,1% se presenta dentro de la frontera agrícola (UPRA, 2017). Del 6,5%, el 4,5% se identifican en clima cálido semiárido, mientras que el restante se identifica en clima cálido semihúmedo.

Los corregimientos que cuentan con mayor presencia de sistemas de uso de plantación forestal son, San José del Peñón, La Haya, San Cayetano y San Agustín. Los corregimientos San José del Peñón y San Agustín cuentan con sistemas de plantación forestal en clima cálido semiárido, el corregimiento San Cayetano cuenta con sistemas de plantación forestal en clima cálido semihúmedo, mientras que el corregimiento de La Haya comparte ambos de los sistemas de uso mencionados anteriormente.

El 2,1% del territorio cuenta con usos de cultivos permanentes de palma de aceite. De los cuales el 1,8% se presenta dentro de la frontera agrícola (UPRA, 2017). Del 2,1%, el 1,9% se identifican en clima cálido semiárido en terrenos planos a ligeramente inclinados, mientras que el restante se identifica en clima cálido semiárido en terrenos moderadamente quebrados.

El corregimiento de San Agustín cuenta con mayor presencia de sistemas de uso de cultivos permanentes de palma de aceite en clima cálido semiárido en terrenos planos a ligeramente inclinados.

El 29,5% del territorio conserva zonas naturales (forestal natural), mientras que el 1,8% del territorio conserva áreas protegidas, como es el santuario de fauna y flora Los Colorados.
2. En las áreas con sistemas de uso de ganadería en clima cálido semiárido en terrenos moderadamente quebrados, como, ganadería en clima cálido semihúmedo en terrenos moderada y fuertemente quebrados, se identifican signos evidentes de degradación (grado fuerte), en donde los cambios en las propiedades de la tierra son significativos y de muy difícil restauración dentro de un límite de tiempo razonable. Los procesos de degradación identificados son de tipo físico (compactación), químico (disminución de la fertilidad y reducción del contenido de materia orgánica) y biológico (pérdida de hábitats).

Las causas directas identificadas que están llevando a dicha degradación son las prácticas inapropiadas en el manejo del suelo, la conversión a otros usos de la tierra, el número excesivo de cabezas de ganado y las tasas de infiltración bajas; mientras que las causas indirectas identificadas son la falta de acceso a la educación y la falta de gobernanza. Dichos procesos de degradación están impactando los servicios productivos, ecológicos y socio-culturales, como el impacto sobre la producción, sobre el ciclo del agua, sobre la materia orgánica, sobre la cobertura del suelo, sobre la estructura del suelo, sobre la biodiversidad y sobre los paisajes estéticos y culturales. Contribuyendo negativamente (10-50%) a los cambios en los servicios ecosistémicos.

En las áreas con sistemas de uso silvopastoril en clima cálido semiárido en terrenos moderada y fuertemente quebrados, se identifican signos obvios de degradación (grado moderado), pero el control y la rehabilitación completa de la tierra aún es posible con un esfuerzo considerable. Los procesos de degradación identificados son de tipo físico (erosión en la superficie y compactación), como químico (disminución de la fertilidad y reducción del contenido de materia orgánica).

Las causas directas identificadas que están llevando a dicha degradación son las prácticas inapropiadas en el manejo del suelo y el número excesivo de cabezas de ganado; mientras que las causas indirectas identificadas son la falta de acceso a la educación y falta de gobernanza. Dichos procesos de degradación están impactando los servicios productivos y ecológicos, como el impacto sobre la producción, sobre la materia orgánica y sobre la biodiversidad. Contribuyendo negativamente (10-50%) a los cambios en los servicios ecosistémicos.

En las áreas con sistemas de uso silvopastoril en clima cálido semihúmedo en terrenos moderada y fuertemente quebrados, existen algunas indicaciones de degradación (grado leve), pero el proceso aún se encuentra en una etapa inicial. Este puede ser fácilmente frenado y el daño puede ser reparado con un menor esfuerzo. Los procesos de degradación identificados son de tipo físico (erosión en la superficie y compactación), como químico (contaminación del suelo).

Las causas directas identificadas que están llevando a dicha degradación son las prácticas inapropiadas en el manejo del suelo y el pisoteo de animales a lo largo de los caminos; mientras que las causas indirectas identificadas son la tenencia de la tierra, el déficit en infraestructura y la falta de acceso a la educación. Dichos procesos de degradación están impactando los servicios productivos y ecológicos, como el impacto sobre la producción, sobre la cobertura del suelo y sobre la estructura del suelo. Contribuyendo negativamente (0-10%) a los cambios en los servicios ecosistémicos.
En las áreas con sistemas de uso de plantación forestal en clima cálido semiárido, se identifican signos obvios de degradación (grado moderado), pero el control y la rehabilitación completa de la tierra aún es posible con un esfuerzo considerable. Los procesos de degradación identificados son de tipo biológico (pérdida de hábitats, como calidad y composición de las especies).

Las causas directas identificadas que están llevando a dicha degradación son las prácticas inapropiadas en el manejo del suelo y la forestación comercial a gran escala; mientras que las causas indirectas identificadas son la falta de acceso a la educación y la gobernanza. Dichos procesos de degradación están impactando los servicios productivos, ecológicos y socio-culturales, como el impacto sobre la producción, sobre la biodiversidad y sobre la seguridad alimentaria, salud y pobreza. Contribuyendo negativamente (10-50%) a los cambios en los servicios ecosistémicos.

En las áreas con sistemas de uso de cultivos permanentes de palma de aceite en clima cálido semiárido en terrenos planos a ligeramente inclinados, se identifican signos obvios de degradación (grado moderado), pero el control y la rehabilitación completa de la tierra aún es posible con un esfuerzo considerable. Los procesos de degradación identificados son de tipo físico (compactación), como biológico (pérdida de hábitats).

Las causas directas identificadas que están llevando a dicha degradación son las prácticas inapropiadas en el manejo del suelo, la maquinaria pesada y la aplicación excesiva de fertilizantes y pesticidas; mientras que las causas indirectas identificadas son la falta de acceso a la educación, el déficit en infraestructura y la gobernanza. Dichos procesos de degradación están impactando los servicios productivos, ecológicos y socio-culturales, como el impacto sobre la producción, sobre la estructura del suelo, sobre la biodiversidad y sobre la seguridad alimentaria, salud y pobreza. Contribuyendo negativamente (0-10%) a los cambios en los servicios ecosistémicos.

3. En las áreas con sistemas de uso (tecnologías) de ganadería en clima cálido semiárido en terrenos moderadamente quebrados, como, ganadería en clima cálido semihúmedo en terrenos moderadamente y fuertemente quebrados, se identifican prácticas de manejo de las tierras (medidas de conservación) agrupadas en sistemas de rotación / cambio de cultivos / barbechos / tala y quema (grupo de conservación de las tierras). La tala y la quema hacen referencia al corte y al quemado de la forestación o bosques para permitir actividades agrícolas o para establecer pasturas para el ganado. Los sistemas de rotación hacen referencia a un mejor manejo de los potreros, con cercado, separación de los estados de producción y rotación del ganado.

La “Efectividad” de las medidas de conservación identificadas en dichos sistemas de uso, es baja, ya que las medidas requieren una mejora y una adaptación local en pos de reducir la degradación de las tierras a límites aceptables. Se necesita de esfuerzos adicionales para alcanzar un estándar “alto”.

En las áreas con sistemas de uso (tecnologías) silvopastoril en clima cálido semiárido en terrenos moderadamente y fuertemente quebrados, se identifican prácticas de manejo de las tierras (medidas de conservación) agrupadas en agrosilvicultura (grupo de conservación de las tierras), la cual describe el sistema del uso de la tierra en donde los árboles crecen junto con cultivos agrícolas, pasturas o ganado; y por lo general
ambas interacciones ecológicas y económicas se dan entre los diferentes componentes del sistema.

La “Efectividad” de las medidas de conservación identificadas en dicho sistema de uso, es *moderada*, ya que las medidas son aceptables para las situaciones dadas. De todas formas, la pérdida de suelo, nutrientes y la capacidad de retención del agua exceden la situación natural u óptima. Además del mantenimiento, se necesitan insumos adicionales para alcanzar un estándar “alto”. En lo que respecta a la degradación hídrica y de la vegetación, las medidas sólo reducen lentamente los procesos de deterioro y degradación, pero éstas no son suficientes.

En las áreas con sistemas de uso (tecnologías) de *plantación forestal en clima cálido semiárido*, se identifican prácticas de manejo de las tierras (medidas de conservación) agrupadas en sistemas de rotación / cambio de cultivos / barbechos / tala y quema (grupo de conservación de las tierras). Se caracteriza como una producción intensiva de pocos años seguida o por un período de un uso poco intensivo que permite el rebrote natural (barbecho), por la resiembra de pasturas, leguminosas, árboles, etc. y luego por un uso intensivo y una limpieza de la vegetación.

La “Efectividad” de las medidas de conservación identificadas en dicho sistema de uso, es *moderada*.

En las áreas con sistemas de uso (tecnologías) de *cultivos permanentes de palma de aceite en clima cálido semiárido* en terrenos planos a ligeramente inclinados, se identifican prácticas de manejo de las tierras (medidas de conservación) agrupadas en reforestación y protección forestal (grupo de conservación de las tierras). Estas medidas cuando se aplican, consisten esencialmente en la reconversión de residuos de cosecha, abonos orgánicos, disminución de carga química en el paquete tecnológico, el manejo de insecticidas y fungicidas orgánicos, el uso de cultivos de cobertura (kudzu) y la protección del bosque ripario.

La “Efectividad” de las medidas de conservación identificadas en dicho sistema de uso, es *moderada*.

4. Teniendo en cuenta la evaluación de la degradación de las tierras, se determinaron ciertas recomendaciones de expertos referidas a las intervenciones sobre cómo abordar la degradación en el área piloto. Arrojando que el 32.2% del área necesita de intervenciones de rehabilitación, el 25.4% de mitigación y el 8.9% de prevención. Recordando que el restante 33.5% del área cuenta con zonas que no son agropecuarias, las cuales no están sujetas a la evaluación de la degradación de las tierras.

Las áreas con sistemas de uso de *ganadería en clima cálido semiárido* en terrenos moderadamente quebrados, como, ganadería en clima cálido semihúmedo en terrenos moderados y fuertemente quebrados, presentan grados *fuertes* de degradación y se identifican prácticas de manejo de las tierras (medidas de conservación) agrupadas en sistemas de rotación / cambio de cultivos / barbechos / tala y quema (grupo de conservación de las tierras) con una *baja* efectividad para abordar la degradación. Estas medidas hacen referencia a un mejor manejo de los potreros, pero su implementación no es siempre adecuada. Se recomienda realizar...
medidas de rehabilitación en el área, ya que las tierras se encuentran degradadas hasta el punto en el cual el uso original ya no es posible y la tierra se vuelve prácticamente inproductiva.

El sistema de uso recomendado para abordar la degradación es un sistema agrosilvopastoril, con prácticas de manejo sostenible como, la conservación de espacios naturales, enriquecimiento con árboles frutales, incorporación de cercas vivas, cosechas de agua, manejo de leguminosas, incorporación de abono orgánico, rotación de cultivos, manejo de pastos mejorados y manejo de potreros junto con una adecuada capacidad de carga animal.

Las áreas con sistemas de uso silvopastoril en clima cálido semiárido en terrenos moderada y fuertemente quebrados, presentan grados moderados de degradación y se identifican prácticas de manejo de las tierras (medidas de conservación) agrupadas en agrosilvicultura (grupo de conservación de las tierras) con una moderada efectividad para abordar la degradación. Se recomienda realizar medidas de mitigación en el área, con la intención de reducir el desarrollo de la degradación y comenzar las mejoras de los recursos y sus funciones.

Se recomienda continuar con el mismo sistema de uso para reducir la degradación, mejorando las prácticas de manejo las cuales permitan una sostenibilidad de las tierras como, aumentar el número de árboles con especies nativas conllevando a la generación de corredores biológicos, incorporación de cercas vivas, manejo de pastos mejorados, manejo de rotación de potreros, capacidad de carga animal adecuada, rotación permanente de ganado, manejo de ganado semi-estabulado y manejo de bancos de silos y proteínas.

Las áreas con sistemas de uso silvopastoril en clima cálido semihúmedo en terrenos moderada y fuertemente quebrados, presentan grados leves de degradación y se identifican prácticas de manejo de las tierras (medidas de conservación) agrupadas en agrosilvicultura y manejo de las tierras con pasturas (grupo de conservación de las tierras) con una moderada efectividad para abordar la degradación. Se recomienda realizar medidas de prevención en el área, con la intención de mantener los recursos naturales y sus funciones ambientales y productivas sobre la tierra, que pueden ser propensas a la degradación.

El sistema de uso recomendado para seguir previniendo la degradación es un sistema agrosilvopastoril en clima cálido en terrenos moderada y fuertemente quebrados, mejorando las prácticas de manejo las cuales permitan una sostenibilidad de las tierras como, un incremento de árboles frutales y maderables, bancos proteicos establecidos en curvas de nivel, separación de los estados de producción, rotación del ganado y la incorporación de cercas vivas.

Las áreas con sistemas de uso de plantación forestal en clima cálido semiárido, presentan grados moderados de degradación y se identifican prácticas de manejo de las tierras (medidas de conservación) agrupadas en sistemas de rotación / cambio de cultivos / barbechos / tala y quema (grupo de conservación de las tierras) con una moderada efectividad para abordar la degradación. Se recomienda realizar medidas de mitigación en el área, con la intención de reducir el desarrollo de la degradación y comenzar las mejoras de los recursos y sus funciones.
El sistema de uso recomendado para abordar la degradación es un sistema agrosilvopastoril, con prácticas de manejo sostenible como, la conservación de espacios naturales, enriquecimiento con árboles frutales, incorporación de cercas vivas, cosechas de agua, manejo de leguminosas, incorporación de abono orgánico, rotación de cultivos, manejo de pastos mejorados, separación de los estados de producción, rotación del ganado y manejo de capacidad de carga animal.

Las áreas con sistemas de uso de cultivos permanentes de palma de aceite en clima cálido semiárido en terrenos planos a ligeramente inclinados, presentan grados moderados de degradación y se identifican prácticas de manejo de las tierras (medidas de conservación) agrupadas en reforestación y protección forestal (grupo de conservación de las tierras) con una moderada efectividad para abordar la degradación. Se recomienda realizar medidas de mitigación en el área, con la intención de reducir el desarrollo de la degradación y comenzar las mejoras de los recursos y sus funciones.

Se recomienda continuar con el mismo sistema de uso mejorando las prácticas de manejo, las cuales permitan una sostenibilidad de las tierras como, generación de infraestructura para la recolección de racimos (vía aérea por camuchas), reconversión de residuos de cosecha, abonos orgánicos, disminución de carga química en el paquete tecnológico, manejo de insecticidas como de fungicidas orgánicos, el uso de cultivos de cobertura (kudzu) y la protección del bosque ripario.
CONCLUSIONES

- La herramienta de mapeo por cuestionarios (MapQuest), involucrada en la metodología WOCAT/LADA, permitió realizar la evaluación de la degradación de las tierras en el área piloto a nivel local (San Juan Nepomuceno - Bolívar), determinando indicadores de fuerzas motrices, presión, estado, impacto y respuesta a la degradación, de una manera participativa por medio de actores multidisciplinarios.

- El uso de las tierras (factor antrópico) puede activar y desencadenar procesos de degradación en las mismas (cambios negativos en los servicios ecosistémicos), es por esto que se vio la necesidad de zonificar (delimitar unidades básicas) los sistemas de uso de las tierras, los cuales permitieron evaluar a partir de cada uno la degradación de las tierras.

- Para determinar buenas prácticas de manejo bajo un uso de la tierra, es necesario vincular al uso, las zonas climáticas y las zonas de relieve como mínimo, con el fin de determinar y delimitar sistemas de uso de las tierras.

- Un buen diagnóstico o evaluación de la degradación de las tierras, depende de la resolución temporal de los sistemas de uso, pues este es un factor muy dinámico y podría arrojar resultados desactualizados los cuales llevarían a una toma de decisiones inadecuada.

- Tanto los sistemas de uso de las tierras como la degradación de las mismas, contaron como unidad de análisis con el atributo de la frontera agrícola, la cual permitió identificar el comportamiento del uso de las tierras dentro del límite agropecuario del país, definido por la Unidad de Planificación Rural Agropecuaria (UPRA).

- Se determinaron los indicadores de estado de la degradación de las tierras en el área piloto, identificando los tipos y grados de degradación bajo la delimitación de cada sistema de uso de las tierras. Indicadores descritos en los capítulos de resultados y análisis de resultados.

- Se determinaron los indicadores de presión sobre las tierras en el área piloto, identificando las causas directas e indirectas que conllevan a la degradación bajo la delimitación de cada sistema de uso de las tierras. Indicadores descritos en los capítulos de resultados y análisis de resultados.

- Se determinaron los indicadores de impacto de la degradación de las tierras en el área piloto, identificando los servicios ecosistémicos afectados negativamente bajo la delimitación de cada sistema de uso de las tierras. Indicadores descritos en los capítulos de resultados y análisis de resultados.

- Se determinaron los indicadores de respuesta a la degradación de las tierras en el área piloto, identificando la efectividad de las prácticas de manejo existentes y el impacto de las mismas sobre los servicios ecosistémicos, bajo la delimitación de cada sistema de uso de las tierras. Indicadores descritos en los capítulos de resultados y análisis de resultados.
Con la evaluación de la degradación de las tierras en el área piloto determinada, se indicaron ciertas recomendaciones, las cuales están referidas a las intervenciones que se deben realizar para abordar la degradación de las tierras.

La herramienta de mapeo por cuestionarios (MapQuest) permitió validar los resultados arrojados de la degradación de las tierras en el área piloto, por medio de talleres locales con la participación de actores multidisciplinarios, como por medio del trabajo en campo el cual consentió en un reconocimiento de la zona.

Por medio de talleres de expertos, mesas técnicas y capacitaciones, se demostró que la herramienta de mapeo por cuestionarios (MapQuest) involucrada en la metodología WOCAT/LADA, presentó una buena aceptación por diferentes actores para determinar la evaluación de la degradación de las tierras ya sea en una zona nacional, regional o local. Sumándole la opción que brinda de comparar los resultados al ser una metodología mundial.

La plataforma WOCAT, permitió consolidar los resultados de la evaluación de la degradación de las tierras en la base de datos global para el manejo sostenible de las mismas. La cual es la principal base de datos recomendada por la Convención de las Naciones Unidas de Lucha contra la Desertificación (UNCCD).

Los resultados arrojados en este informe sobre la evaluación de la degradación de las tierras en el área piloto, pueden aportar para la compilación del VI Informe Nacional de implementación de la Convención de las Naciones Unidas para la Lucha contra la Desertificación (UNCCD), el cual será presentado ante la Convención antes de finalizar el 2018.

De acuerdo con la ONU, este año bajo el eslogan “La tierra es valiosa. Invierte en ella”, involucramos a todos para rechazar el uso insostenible de la tierra y producir cambios invirtiendo en el futuro de este recurso.
Evaluación de la degradación de las tierras a nivel local – San Juan Nepomuceno (Bolívar)

ANEXOS

Anexo 1.

FORMATO DE ASISTENCIA A REUNIONES

Tema: Taller Evaluación degradación y UST a nivel local en San Juan Nepomuceno
Dependencia Responsable: Proyecto GC1601357/696
Objetivo de la reunión: Realizar el taller de evaluación de la degradación de tierras y preparar UST a nivel local
Lugar: Sede O. Cartagena
Fecha (dd/mm/aa): 11-04-2018
Hora Inicio: 8:00 am
Hora Terminación: 5:30 pm

ASISTENTES

<table>
<thead>
<tr>
<th>NOMBRE</th>
<th>CARGO</th>
<th>ENTIDAD / DEPENDENCIA</th>
<th>E-MAIL</th>
<th>CELULAR</th>
<th>FIRMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Julio Cerezo C. Jr.</td>
<td>Promotor Am.</td>
<td>FHAC</td>
<td>juliancervizc@ymail.com</td>
<td>3203631613</td>
<td></td>
</tr>
<tr>
<td>José Eugenio Rosas</td>
<td>Gerente Produ.</td>
<td>FHAC</td>
<td>jose@fhac.com</td>
<td>123456789</td>
<td></td>
</tr>
<tr>
<td>Héctor Higareda</td>
<td>Coordinador</td>
<td>FHAC</td>
<td>hector@fhac.com</td>
<td>987654321</td>
<td></td>
</tr>
<tr>
<td>Martín Mendoza</td>
<td>Investigador</td>
<td>FHAC</td>
<td>martin@fhac.com</td>
<td>123456789</td>
<td></td>
</tr>
<tr>
<td>Pablo Ramírez</td>
<td>Coordinador</td>
<td>FHAC</td>
<td>pablo@fhac.com</td>
<td>987654321</td>
<td></td>
</tr>
<tr>
<td>Luis Rodríguez</td>
<td>Gerente Produ.</td>
<td>FHAC</td>
<td>luis@fhac.com</td>
<td>123456789</td>
<td></td>
</tr>
<tr>
<td>Lucía Arévalo</td>
<td>Consultora</td>
<td>FHAC</td>
<td>lucia@fhac.com</td>
<td>987654321</td>
<td></td>
</tr>
<tr>
<td>Harry Rivera</td>
<td>Coordinador</td>
<td>FHAC</td>
<td>harry@fhac.com</td>
<td>123456789</td>
<td></td>
</tr>
</tbody>
</table>

Nombre Responsable Reunión:
Evaluación de la degradación de las tierras a nivel local – San Juan Nepomuceno (Bolívar)

FORMATO DE ASISTENCIA A REUNIONES

Tema: Talleres de evaluación de la degradación de las tierras a nivel local en San Juan Nepomuceno - Bolívar

Dependencia Responsable: Proyecto GEL-16103376FF

Objetivo de la reunión: Realizar el taller de evaluación de la degradación de tierras.

Lugar: San Juan Nepomuceno

Fecha (dd/mm/aa): 11/04/2018

Hora Inicio: 8:00 AM

Hora Terminación: 5:00 PM

ASISTENTES

<table>
<thead>
<tr>
<th>NOMBRE</th>
<th>CARGO</th>
<th>ENTIDAD / DEPENDENCIA</th>
<th>E-MAIL</th>
<th>CELULAR</th>
<th>FIRMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carolina Oliver</td>
<td>Consultor</td>
<td>FAO</td>
<td>carolina.oliver@fao.org</td>
<td>3111234567</td>
<td></td>
</tr>
<tr>
<td>Julio Guaderr</td>
<td>Consultor</td>
<td>FAO</td>
<td>julio.guaderr@fao.org</td>
<td>3002123456</td>
<td></td>
</tr>
<tr>
<td>María Barrios</td>
<td>Jefe de trabajo</td>
<td>ART</td>
<td>maria.barrios@art.org</td>
<td>3123456789</td>
<td></td>
</tr>
<tr>
<td>Javier Oliver</td>
<td>Coordinador</td>
<td>FAO</td>
<td>javier.oliver@fao.org</td>
<td>3112345678</td>
<td></td>
</tr>
</tbody>
</table>

Nombre Responsable Reunión:

Representaciones FAO Colombiana - Av. 9 de Octubre y Calle 73 No. 343 Carrera 767 – Bogotá
Teléfono: +571-2945300 - Fax: +571-2945301 - info@representacionesfao-colombiana.org

Organización de las Naciones Unidas para la Alimentación y la Agricultura

GEP - Global Environment Facility
Investing in our Planet
Evaluación de la degradación de las tierras a nivel local – San Juan Nepomuceno (Bolívar)
Evaluación de la degradación de las tierras a nivel local – San Juan Nepomuceno (Bolívar)

FORMATO DE ASISTENCIA A REUNIONES

Tema: Tallar Ejecución de la degradación de tierras a nivel local en San Juan Nepomuceno

Dependencia Responsable: Proyecto 616160337 GIZ

Objetivo de la reunión: Realizar tallar de la degradación de tierras a nivel local en San Juan Nepomuceno

Lugar: San Juan Nepomuceno
Fecha (dd/mm/aa): 12-04-2017
Hora Inicio: 8:00 AM
Hora Terminación: 6:00 PM

ASISTENTES

<table>
<thead>
<tr>
<th>NOMBRE</th>
<th>CARGO</th>
<th>ENTIDAD / DEPENDENCIA</th>
<th>E-MAIL</th>
<th>CELULAR</th>
<th>FIRMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gerardo Romo Asa</td>
<td>Gerente Técnico</td>
<td>UNIDO</td>
<td>inmobiliar@unido.uminho.pt</td>
<td>3126088365</td>
<td></td>
</tr>
<tr>
<td>Giulio Andone</td>
<td>Consultor FAO</td>
<td>FAO</td>
<td>junio.ortega@unido.pt</td>
<td>30011957</td>
<td></td>
</tr>
<tr>
<td>Jesús Choob</td>
<td>Coordinador</td>
<td>FAO</td>
<td>jesus.choob@unido.pt</td>
<td>3112868920</td>
<td></td>
</tr>
</tbody>
</table>

Nombre Responsable Reunión:
Anexo 2.

CUESTIONARIO (Q1)

Contribution de Especialistas
Si están involucrados varios especialistas, escriba todos los datos de las principales personas involucradas y de sus instituciones y agregue a continuación el nombre de otra persona(s) con su institución(s).

Apellido: Andrade González
Nombre(s): Wilmer de Jesús
Femenino _ Masculino X

Institución actual y dirección:

Nombre de la Institución: Fundación herencia ambiental caribe
Dirección de la Institución: Calle 9ª # 0 – 72
Ciudad: San Juan Nepomuceno
Código Postal:

Estado o Distrito: Bolivar
País: Colombia
Tel: 3216680019 Fax:
E-mail: wilmerandrade25@gmail.com

Dirección Permanente:

Ciudad: San Juan Nepomuceno
Código Postal:

Estado o Distrito: Bolivar
País: Colombia

Otras personas involucradas:
Institución:

Por favor, confirme que la institución, proyecto, etc., al que se hace referencia, no tiene objeciones en que WOCAT – LADA utilice y distribuya dicha información.

Fecha: 11/04/2018 Firma: Wilmer Andrade

Gracias!
CUESTIONARIO (Q1)

Contribución de Especialistas

Si están involucrados varios especialistas, escriba todos los datos de las principales personas involucradas y de sus instituciones y agregue a continuación el nombre de otra persona(s) con su institución(s).

Apellido: Leiva Andrade Nombre(s): Julián Isaías Femenino _

Institución actual y dirección:
Nombre de la Institución: Fundación herencia ambiental caribe
Dirección de la Institución: Cra 7 # 10ª - 3
Ciudad: San Juan Nepomuceno Código Postal:
Estado o Distrito: Bolívar País: Colombia
Tel: 3158050517 Fax: 3158050517 E-mail: julianleyva1976@yahoo.es

Dirección Permanente:
Ciudad: San Juan Nepomuceno Código Postal:
Estado o Distrito: Bolívar País: Colombia

Otras personas involucradas: Fundación herencia ambiental caribe

Por favor, confirme que la institución, proyecto, etc., al que se hace referencia, no tiene objeciones en que WOCAT – LADA utilice y distribuya dicha información.

Fecha: 11/04/2018 Firma: Julián Leiva

Gracias!
CUESTIONARIO (Q1)

Contribución de Especialistas
Si están involucrados varios especialistas, escriba todos los datos de las principales personas involucradas y de sus instituciones y agregue a continuación el nombre de otra persona(s) con su institución(s).

<table>
<thead>
<tr>
<th>Apellido:</th>
<th>Nombre(s):</th>
<th>Femenino</th>
</tr>
</thead>
<tbody>
<tr>
<td>Romero Acosta</td>
<td>Carlos Arturo</td>
<td>Masculino X</td>
</tr>
</tbody>
</table>

Institución actual y dirección:

Nombre de la Institución: Sodexma

Dirección de la Institución: Municipio de San Juan Nepomuceno

<table>
<thead>
<tr>
<th>Ciudad:</th>
<th>Código Postal:</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Juan Nepomuceno</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Estado o Distrito:</th>
<th>País:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bolivar</td>
<td>Colombia</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tel:</th>
<th>Fax:</th>
<th>E-mail:</th>
</tr>
</thead>
<tbody>
<tr>
<td>3126035369</td>
<td></td>
<td>indocarlos@hotmail.com</td>
</tr>
</tbody>
</table>

Dirección Permanente: Cra 12 # 16-3

<table>
<thead>
<tr>
<th>Ciudad:</th>
<th>Código Postal:</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Juan Nepomuceno</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Estado o Distrito:</th>
<th>País:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bolivar</td>
<td>Colombia</td>
</tr>
</tbody>
</table>

Otras personas involucradas:

Por favor, confirme que la institución, proyecto, etc., al que se hace referencia, no tiene objeciones en que WOCAT – LADA utilice y distribuya dicha información.

Fecha: 11/04/2018 Firma: Carlos Romero

Gracias!
Evaluación de la degradación de las tierras a nivel local – San Juan Nepomuceno (Bolívar)

CUESTIONARIO (Q1)

Contribución de Especialistas
Si están involucrados varios especialistas, escriba todos los datos de las principales personas involucradas y de sus instituciones y agregue a continuación el nombre de otra persona(s) con su institución(s).

Apellido: Arango Femenino
Nombre(s): Harold
Masculino X

Institución actual y dirección:
Nombre de la Institución: Programa riqueza natural USAID
Dirección de la Institución: Cll 76 # 11 – 17 Piso 7

Ciudad: Bogotá D.C. Código Postal:
Estado o Distrito: Bogotá D.C. País: Colombia
Tel: Fax: E-mail: gcarmona@riquezanatural.org

Dirección Permanente: Cll 56 # 14 – 04

Ciudad: Bogotá D.C. Código Postal:
Estado o Distrito: Bogotá D.C. País: Colombia
Otras personas involucradas: Institución:

Por favor, confirme que la institución, proyecto, etc., al que se hace referencia, no tiene objeciones en que WOCAT – LADA utilice y distribuya dicha información.

Fecha: 11/04/2018 Firma: Harold Arango

Gracias!
CUESTIONARIO (Q1)

Contribución de Especialistas
Si están involucrados varios especialistas, escriba todos los datos de las principales personas involucradas y de sus instituciones y agregue a continuación el nombre de otra persona(s) con su institución(s).

Apellido: Carmona Herrera
Nombre(s): Gabriel
Femenino _
Masculino X

Institución actual y dirección:

Nombre de la Institución: Programa riqueza natural USAID

Dirección de la Institución: Cll 12 # 10 – 91

Ciudad: San Juan Nepomuceno
Código Postal:

Estado o Distrito: Bolivar
País: Colombia

Tel: 3104908559 Fax: E-mail: gcarmona@riquezanatural.org

Dirección Permanente: Urbanización El Rodeo sector 2

Ciudad: Cartagena
Código Postal:

Estado o Distrito: Bolivar
País: Colombia

Otras personas involucradas:
Institución:

Por favor, confirme que la institución, proyecto, etc., al que se hace referencia, no tiene objeciones en que WOCAT – LADA utilice y distribuya dicha información.

Fecha: 11/04/2018 Firma: Gabriel Carmona

Gracias!
Evaluación de la degradación de las tierras a nivel local – San Juan Nepomuceno (Bolívar)

CUESTIONARIO (Q1)

Contribución de Especialistas
Si están involucrados varios especialistas, escriba todos los datos de las principales personas involucradas y de sus instituciones y agregue a continuación el nombre de otra persona(s) con su institución(s).

Apellido: De La Rosa Manjarrés
Nombre(s): Nelson Rafael
Femenino: X

Institución actual y dirección:
Nombre de la Institución: Parques Nacionales Naturales de Colombia PNN
Dirección de la Institución: Frente a la plaza Olaya Herrera
Ciudad: San Juan Nepomuceno
Código Postal:
Estado o Distrito: Bolívar
País: Colombia
Tel: 6891058
Fax:
E-mail: colorados@parquesnacionales.gov.co

Dirección Permanente:
Ciudad:
Código Postal:
Estado o Distrito:
País:

Otras personas involucradas:
Institución:

Por favor, confirme que la institución, proyecto, etc., al que se hace referencia, no tiene objeciones en que WOCAT – LADA utilice y distribuya dicha información.

Fecha: 11/04/2018
Firma: Nelson De La Rosa

Gracias!
CUESTIONARIO (Q1)

Contribución de Especialistas
Si están involucrados varios especialistas, escriba todos los datos de las principales personas involucradas y de sus instituciones y agregue a continuación el nombre de otra persona(s) con su institución(s).

Apellido: Medrano Silva Nombre(s): Nayarín Femenino X Masculino _

Institución actual y dirección:
Nombre de la Institución: Sede Gobernación de Bolívar, El Carmen de Bolívar
Dirección de la Institución: Cll 23 # 50 – 31
Ciudad: El Carmen de Bolívar Código Postal:
Estado o Distrito: Bolivar País: Colombia
Tel: 6517444 – Ext. 5000 Fax: E-mail: emartinez@bolivar.gov.co

Dirección Permanente:
Ciudad: Código Postal:
Estado o Distrito: País:
Otras personas involucradas: Institución:

Por favor, confirme que la institución, proyecto, etc., al que se hace referencia, no tiene objeciones en que WOCAT – LADA utilice y distribuya dicha información.

Fecha: 11/04/2018 Firma: Nayarín Medrano S.

Gracias!
CUESTIONARIO (Q1)

Contribución de Especialistas

Si están involucrados varios especialistas, escriba todos los datos de las principales personas involucradas y de sus instituciones y agregue a continuación el nombre de otra persona(s) con su institución(s).

Apellido: Barrios De La Espriella
Nombre(s): María del Rosario
Femenino X

Institución actual y dirección:

Nombre de la Institución: Agencia de renovación del territorio ART
Dirección de la Institución: Cra 19ª # 14ª - 30

Ciudad: Sincelejo
Código Postal:
Estado o Distrito: Sucre
País: Colombia
Tel: Fax: E-mail:

Dirección Permanente:

Ciudad: San Juan Nepomuceno
Código Postal:
Estado o Distrito: Bolívar
País: Colombia

Otras personas involucradas: Institución:

Por favor, confirme que la institución, proyecto, etc., al que se hace referencia, no tiene objeciones en que WOCAT – LADA utilice y distribuya dicha información.

Fecha: 11/04/2018
Firma: María del Rosario Barrios
Gracias!
CUESTIONARIO (Q1)

Contribución de Especialistas
Si están involucrados varios especialistas, escriba todos los datos de las principales personas involucradas y de sus instituciones y agregue a continuación el nombre de otra persona(s) con su institución(s).

Apellido: Rodelo Ortega
Nombre(s): José Angel
Femenino X

Institución actual y dirección:

Nombre de la Institución: Asopulpito
Dirección de la Institución:
Ciudad: San Juan Nepomuceno
Estado o Distrito: Bolívar
País: Colombia
Tel: 3207631019
Fax:
E-mail:

Dirección Permanente:

Ciudad:
Estado o Distrito:
País:

Otras personas involucradas:

Por favor, confirme que la institución, proyecto, etc., al que se hace referencia, no tiene objeciones en que WOCAT – LADA utilice y distribuya dicha información.

Fecha: 11/04/2018
Firma: José Rodelo

Gracias!
CUESTIONARIO (Q1)

Contribución de Especialistas
Si están involucrados varios especialistas, escriba todos los datos de las principales personas involucradas y de sus instituciones y agregue a continuación el nombre de otra persona(s) con su institución(s).

Apellido: Rodríguez Arrieta
Nombre(s): Cesar
Femenino _ X Masculino

Institución actual y dirección:

Nombre de la Institución: Asicac
Dirección de la Institución: Vereda Cañito
San Juan Nepomuceno
Código Postal:

Estado o Distrito: Bolivar
País: Colombia
Tel: 3114284124 Fax: E-mail: asi_cac@yahoo.es

Dirección Permanente: Dgn 15º # 20-16

Ciudad: San Juan Nepomuceno
Código Postal:

Estado o Distrito: Bolivar
País: Colombia
Otras personas involucradas:
Institución:

Por favor, confirme que la institución, proyecto, etc., al que se hace referencia, no tiene objeciones en que WOCAT – LADA utilice y distribuya dicha información.

Fecha: 11/04/2018 Firma: Cesar Rodríguez
Gracias!
Evaluación de la degradación de las tierras a nivel local – San Juan Nepomuceno (Bolívar)

CUESTIONARIO (Q1)

Contribución de Especialistas
Si están involucrados varios especialistas, escriba todos los datos de las principales personas involucradas y de sus instituciones y agregue a continuación el nombre de otra persona(s) con su institución(s).

Apellido: Arrieta Vásquez Nombre(s): Ricardo Manuel Femenino _

Institución actual y dirección:
Nombre de la Institución: Sodeyma
Dirección de la Institución: Centro de acopio lechero – Barrio Victorino
Calle: 3107484831 Tel: 3107484831
Dirección: Sodeyma@yahoo.es

Institución Permanente: Cll 8 # 7-65
Ciudad: San Juan Nepomuceno
Código Postal:

Otras personas involucradas:

Por favor, confirme que la institución, proyecto, etc., al que se hace referencia, no tiene objeciones en que WOCAT – LADA utilice y distribuya dicha información.

Fecha: 11/04/2018 Firma: Ricardo Arrieta

Gracias!
CUESTIONARIO (Q1)

Contribución de Especialistas

Si están involucrados varios especialistas, escriba todos los datos de las principales personas involucradas y de sus instituciones y agregue a continuación el nombre de otra persona(s) con su institución(s).

Apellido: Barrios Vásquez Nombre(s): Juan Carlos Femenino _

Institución actual y dirección:

Nombre de la Institución: Fundación proyecto titi

Dirección de la Institución: Cll 77 # 65 – 37 Local 208

Ciudad: Barranquilla Código Postal: ___________________________

Estado o Distrito: Atlántico País: Colombia

Tel: 3015794766 Fax: __________________________

E-mail: jbarrios@proyectotiti.com

Dirección Permanente:

Ciudad: ___________________________

Estado o Distrito: ___________________________

País: ___________________________

Otras personas involucradas:

__

Por favor, confirme que la institución, proyecto, etc., al que se hace referencia, no tiene objeciones en que WOCAT – LADA utilice y distribuya dicha información.

Fecha: 11/04/2018 Firma: Juan Barrios

Gracias!
CUESTIONARIO (Q1)

Contribución de Especialistas
Si están involucrados varios especialistas, escriba todos los datos de las principales personas involucradas y de sus instituciones y agregue a continuación el nombre de otra persona(s) con su institución(s).

Apellido: Buelvas Meza Nombre(s): Cesar Femenino X

Institución actual y dirección:
Nombre de la Institución: FAO
Dirección de la Institución: Plaza Olaya Herrera
Ciudad: San Juan Nepomuceno Código Postal:
Estado o Distrito: Bolivar País: Colombia
Tel: 3135394577 Fax: E-mail: cesarbuelvasmeza@yahoo.com

Dirección Permanente: Cra 6 # 13-4
Ciudad: San Juan Nepomuceno Código Postal:
Estado o Distrito: Bolivar País: Colombia

Otras personas involucradas:
Institución:

Por favor, confirme que la institución, proyecto, etc., al que se hace referencia, no tiene objeciones en que WOCAT – LADA utilice y distribuya dicha información.

Fecha: 11/04/2018 Firma: Cesar Buelvas

Gracias!
Anexo 3.
(Acta mesa técnica institucional)

<table>
<thead>
<tr>
<th>Tema</th>
<th>Proyecto GPC/GLO/337/GFF FAO – UPRA (MANEJO SOSTENIBLE DE TIERRAS-MST) Tercera Mesa Técnica Institucional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objeto de la reunión</td>
<td>En el marco del Proyecto Manejo sostenible de tierras de UPRA – FAO, se realiza este taller con el objetivo de socializar y presentar las metodologías de LADA WOCAT sobre evaluación de la degradación de tierras y los enfoques y tecnologías de manejo sostenible, con el fin de valorar sus bondades y aplicaciones para las instituciones del sector productivo y ambiental.</td>
</tr>
<tr>
<td>Fecha y hora</td>
<td>Febrero 27 de 2018, 8:30 am – 2:00 pm</td>
</tr>
</tbody>
</table>

1. ASISTENTES

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Cargo</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Ver Listado adjunto</td>
</tr>
</tbody>
</table>

2. DESARROLLO DE LA REUNIÓN

<table>
<thead>
<tr>
<th>Orden</th>
<th>Temas tratados</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Presentación del Proyecto – Javier Otero García</td>
</tr>
<tr>
<td>2</td>
<td>Evaluación de la degradación de las tierras escala local – LADA-WOCAT: Metodología, ejercicio práctico – Julio Cesar Álvarez</td>
</tr>
<tr>
<td></td>
<td>Se socializó la metodología de evaluación de la degradación de las tierras en zonas áridas (LADA) junto con la sinergia del panorama mundial de enfoques y tecnologías de conservación (WOCAT), bajo el "cuestionario para posibilitar la realización de Mapas de la Degradación de la Tierra y el Desarrollo de Mecanismos para el Manejo Sostenible de la Tierra” en el área de trabajo a nivel local (San Juan Nepomuceno – Bolívar). Se presentaron de manera general las 5 etapas o pasos de la metodología y se realizó el ejercicio práctico de las 3 primeras etapas (1. Contribución de los especialistas, 2. Sistema/Clasificación del Uso de la Tierra – LUS, 3. Degradación de la Tierra por cada Sistema/Clasificación del Uso de la Tierra.) En la etapa 1, contribuyeron especialistas técnicos del MADS, MADR, DNP, CANCILLERÍA, UPRA, ASOCIACIÓN DE SUELOS, CAR. En la etapa 2, se procedió a socializar y explicar la propuesta para generar y definir los LUS a partir de la cobertura de la tierra, zonas climáticas y el relieve junto a la pendiente. Definidos los LUS, se tomaron como ejemplo práctico tres de ellos: Ganadería en clima cálido semiárido moderadamente quebrado, Ganadería en clima cálido húmedo fuertemente quebrado y Silvopastoril con pastos y espacios naturales en clima cálido semiárido moderadamente quebrado.. Con la etapa 2 finalizada, se procede a realizar la etapa 3 la cual permite identificar indicadores de estado, presión e impacto para cada LUS, a partir del cuestionario número 3. Este cuestionario se repartió entre 6 grupos de mesa de trabajo con el objeto de hacer práctico la etapa 3. Los resultados obtenidos se socializaron mediante plenaria. Posteriormente se dio una introducción de las etapas 4 y 5 las cuales se desarrollarían por Carolina Olvera a continuación.</td>
</tr>
<tr>
<td>3</td>
<td>Prácticas de Manejo sostenible de tierras - MST: adaptadas al estudio de caso Identificación, aplicaciones, monitoreo, (mesas de trabajo) – Carolina Olivera – Eusebio Sanchez</td>
</tr>
<tr>
<td></td>
<td>Se presentaron las etapas 4 y 5 de la metodología de mapeo de degradación. En estas etapas se describen las prácticas adaptadas al tipo de degradación identificado, para cada LUS zonificado. En la etapa 4, estas prácticas se clasifican según la clase de conservación, el propósito y el tipo de manejo. Se establece el área cubierta por la práctica, así como su efectividad y su efecto sobre los servicios ecosistémicos. De esta manera, se puede establecer la manera más adecuada de representar las tecnologías utilizadas y su efecto sobre la degradación, para cada LUS. Una vez completada esta etapa, se procede a realizar la etapa 5 que corresponde a la recomendación</td>
</tr>
</tbody>
</table>
de expertos acerca de las futuras acciones a ser implementadas, así como el impacto que se espera que tengan sobre la degradación. Estas etapas de la metodología de mapeo se ilustraron a través de los ejemplos de LUS seleccionados en el ejercicio anterior y en particular con los ejemplos del piloto seleccionado sobre el cambio de manejo de la ganadería en clima cálido semi árido y las descripción de las prácticas que han sido implementadas en los últimos 10 años en la finca del Señor Edwin Niño. Se presentan fotografías de la zona antes y después de la implementación de MST así como cifras relacionadas con la productividad y la rentabilidad de la producción.

<table>
<thead>
<tr>
<th>Comentarios Luz Marina Arevalo</th>
</tr>
</thead>
</table>

Intervenciones de la primera presentación introductoria:

DNP

El conflicto de la tierra no se ha reducido a pesar de las distintas acciones y políticas existentes
El proyecto cuando termina y cuáles son los entregables,
El proyecto puede generar unos Lineamientos para las nuevas bases del PND?
Es importante dejar claro roles de las instituciones
Política nacional de gestión integral de suelos como se articula a este proyecto.
MADES:
Un piloto en zona andina sería recomendable dado el alto nivel de degradación MADS
Recomienda tener en cuenta producto del IAVH – mapa de transformación de ecosistemas sugiere revisarlo, en lugar de la variable de degradación de biomas.

UNGR:

Que le puede aportar este proceso al nuevo PND- ejemplo respecto a la Orinoquia, que tipo de proyectos se pueden implementar en zonas de conflicto.
Como se actualizan los mapas de acuerdo con los escenarios de cambio climático
Un instrumento que puede contribuir es el EZUAT- por su carácter vinculante

UPRA

Es importante considerar los escenarios de reconversión productiva agropecuaria de los lineamientos de OPSP.
Como apropiar el uso de los productos de planificación rural agropecuaria. El proyecto genera un sentido de urgencia de sensibilidad sobre la problemática y co-confianza.
En el tiempo debe haber un empoderamiento institucional del enfoque de MST
FAI Si hay necesidad de construir un mapa de usos del suelo, por ejemplo para regular precios del mercado. Es importante que alguna entidad lidere el proceso.
La UPRA consume datos primarios. Pero donde se debe hacer un sistema de monitoreo de datos?.
Una sola entidad no resuelve todo el problema

METODOLOGIA LADA- Evaluación de degradación- DONDE, CAUSA E IMPACTOS

Wocat conservación de la tierra a través de diferentes herramientas
Se muestran los distintos pasos de la metodología
Deficiencia en los POT
Paso 1. Comprobación especialistas
Paso 2. Sistema de clasificación de uso de la tierra – ganadería en clima cálido, silvopastoril en semiárido
Paso 3. Evaluación de degradación

PRACTICAS DE MANEJO SOSTENIBLE DE TIERRAS

Cuestionario de tecnologías se constituye en un instrumento importante de identificación y seguimiento de buenas prácticas.
Indicadores
Recomendaciones de expertos
11 propósitos
26 tipos
4 tipos de medidas

CONCLUSIONES

El enfoque de manejo sostenible de tierras ofrece una oportunidad para orientar una gestión institucional integral y coordinada entre distintos sectores, y contribuye a la disminución y prevención de la degradación de tierras.
En el tiempo debe haber un empoderamiento institucional del enfoque de MST
La metodología de evaluación de la degradación de tierras LADA permite tener un análisis integrado del estado, causas e impactos de la degradación de tierras que mediante la participación de expertos y actores locales permite validar el
Evaluación de la degradación de las tierras a nivel local – San Juan Nepomuceno (Bolívar)

<table>
<thead>
<tr>
<th>Recomendaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Este enfoque se puede incorporar en las bases del próximo plan nacional de desarrollo, políticas, POT, EZUAT, y otros instrumentos de planificación, financieros y proyectos en territorio.</td>
</tr>
<tr>
<td>Ampliar capacitaciones sobre la metodología LADA para actores institucionales y académicos y tecnologías y buenas prácticas.</td>
</tr>
<tr>
<td>Considerar para la metodología de evaluación el mapa de transformación de ecosistemas sugiere revisarlo del AVH.</td>
</tr>
<tr>
<td>Evaluar pertinencia de transformación del bioma. Indicador de capacidad de resiliencia de servicios ecosistémicos. Medir diversidad de especies.</td>
</tr>
<tr>
<td>Identificar una estructura institucional pertinente para fortalecer el enfoque de MST en Colombia y la elaboración de insumos de información fundamentales como son los sistemas de uso de la tierra. Es importante considerar los escenarios de cambio climático y de reconversión productiva agropecuaria de los lineamientos de OPSP.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cesión discusión de Preguntas:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preguntas 1 y 2:</td>
</tr>
<tr>
<td>IGAC: Ya aplica a escala 1:25.000 estos criterios y ha incluido algunos indicadores – aplicaciones en salinidad- con posible aplicación para la zona. También puede considerarse en el modelo los estudios de carbono orgánico.</td>
</tr>
<tr>
<td>UDC: Como apoyo a IDEAM y CAR hay otros riesgos como la infestación – estructurar línea bases de los procesos de degradación de suelos. Hay especialización de suelos que se podría complementar con estos desarrollos. La UDCA tiene estudios de Sistemas de uso de la tierra de la Mojana – tenencia y tamaño de predios – con Corpoica.</td>
</tr>
<tr>
<td>PIDAR a cargo de la ADR son proyectos que aún no tienen un enfoque integral, de la gran batería presentada cuales podrían aplicar como medida de emergencia. Que sean proyectos más integrales. Incluir parte de las propuestas exitosas.</td>
</tr>
<tr>
<td>CAR: Destaca el trabajo de monitoreo del DMI de Fuquene consuelos muy salinos, con distritos de riego, documento próximamente disponible sobre estado de salinización de suelos. Erosión: monitoreo en 5 municipios donde se evidencia sobre laboreo, ganadería en ladera, y otras prácticas inadecuadas. Se va a monitorear la cuenca de Sumapaz, en proceso de declaración del DMI del Tablazo. Este proyecto ayuda a generación de conocimiento en la corporación.</td>
</tr>
<tr>
<td>UNGR: En sentido es promover territorios seguros Fortalecer protección de riesgos naturales, Incorporar criterios de variabilidad climática, control de aguas por eventos extremos. Delimitar la frontera agrícola del país, conflictividad de distritos de manejo y riego con cambios tecnológicos. Reabilitación de tierras- conversación de las diferentes agendas sectoriales, Falta un trabajo de articulación de estrategias sectoriales, Paso 4 de la metodología protección riesgos naturales por terremotos eliminar.</td>
</tr>
<tr>
<td>Pregunta 3:</td>
</tr>
</tbody>
</table>
| MADR- Como ente rector de la política agropecuaria debe emprender muchas áreas de acción, Lineamientos de OPSPR y su plan de acción estructural en sus ejes transversales. Planificación y reconversión productiva – zonificar y hacer planeación agropecuaria del sector. Y sobre este instrumento orientar los demás instrumentos de política, considerar la informalidad en la tenencia de la tierra - hacer un programa más ágil de este proceso para que la población tenga acceso a otros servicios. Igualmente mejorar la redistribución de la tierra- cada vez más precisión sobre sistemas de producción jóvenes – tierras improductivas – reducción de inequidad, hacer equipo con las distintas estrategias sectoriales, la educación es un tema.
claves

MADS
Revisar en qué va la ejecución de acciones del plan de acción de lucha contra la desertificación y la sequía y seguimiento de acciones – Este plan fue formulado en el 2004.
Política de suelos y de biodiversidad fortalecer la agenda de planificación intersectorial. La metodología permite fortalecer los instrumentos de planificación para microcuencas.

MIN AMBIENTE: Está trabajando criterios ambientales en temas pecuarios a través del programa de gestión ambiental para los sectores- ganadería con Minagricultura- Ahora para el sector porciola –

DNP
Herramienta importante pero es importante incorporar otra serie de atributos social, económico y ambiental de forma más amplia.
Definir a los entes territoriales propuestas que no los confundan, dado que todas las entidades ofrecen enfoques y programas similares con distintos nombres. Hay muchas figuras de OT y extensión. Mira los de forma integral y buscar que en futuras apuestas en territorios estén articuladas de acuerdo al ámbito de competencias de cada entidad.

Sistema general de regalías- se puede potencializar, propender por una estrategia de usos sostenible del suelo. Valoración económica de activos naturales- Misión crecimiento verde, perfilar más desde esta metodología los análisis de aptitud en los espacios territoriales. Es importante compartir con las entidades participantes del taller los resultados del pilotaje del proyecto.

CANCILLERIA
Hace seguimiento al PAN impulsado por la convención. Se va a actualizar este plan. Realizar talleres de los diferentes sectores, es una oportunidad que este enfoque se vea reflejado. Establecimiento de metas voluntarias de degradación (Caribe zonas priorizadas). 8 metas (restauración, rehabilitación). Tener en cuenta este marco de referencia, se va a compartir a los correos este material.

UPRA
MST el mundo está lleno de experiencias, no obstantes son respaldadas por ONG o cooperantes, pero es necesario que sea intencional como política de gobierno. Momento propicio se ha definido en la Frontera Agrícola y Zonificación ambiental.
Fomentar este nuevo pensamiento de vida. Todas son herramientas para el uso eficiente del suelo, planificación en los distintos ámbitos de planificación, Aprovechar el WOCat para alinean esos aprendizajes, zonas aptas es un deber ser, pero en escalas más detalladas definir esas herramientas y lineamientos de reconversión, instrumentos del sector que incorporen este enfoque y multiplicar a más territorios.

Indicadores de mejoramiento de calidad de vida y de productividad- se requiere un seguimiento permanente, generar conocimiento o ADN para que el proyecto perme.
En UPRA todo lo que se hace se enfoca a superar la inosostenibilidad del negocio y propender por la sostenibilidad ambiental. Definir la necesidad del cliente para saber cómo llega y sensibilizar por el sentido de urgencia, constituir confianza, y propuestas de avance. Identificar los que tienen que estar, continuar trabajando los lineamientos, criterios e instrumentos que diseña la entidad con este enfoque.

ICR
Seguro agropecuario asociado a las buenas prácticas- implica tener buena información, bien detallada. Usar Lenguaje más coloquial para llegar a los actores locales.

Instrumentos de planificación y gestión:
Ley 388 regula usos y aprovechamientos, pero es necesario ponerle condiciones al uso, Intensidad al uso y condiciones al uso, Instrumentos financieros. Incentivos económicos, Tributarios y no Tributarios, donde hay aptitud doy incentivos, también deben incentivarse las buenas prácticas, los instrumentos tributarios también se deben revisar, Asociar también a instrumentos de gestión como el PND, regalías.

Asociación de Suelos: Manifiesta su disposición para servir de canal de divulgación sobre el entendimiento de la metodología LADA y la plataforma del WOCAT.

3. COMPROMISOS

<table>
<thead>
<tr>
<th>Responsable</th>
<th>Tareas Pendientes</th>
<th>Fecha Límite</th>
</tr>
</thead>
</table>

De conformidad, se anexa lista de asistencia, con firma de participantes de la reunión.
Evaluación de la degradación de las tierras a nivel local – San Juan Nepomuceno (Bolívar)

(Lista de asistencia a la tercera mesa técnica institucional)

<table>
<thead>
<tr>
<th>Tema:</th>
<th>Tercera Mesa Técnica Institucional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependencia Responsable:</td>
<td>Proyecto GCP/601/339/GFF FAO-UPRA</td>
</tr>
<tr>
<td>Objetivo de la reunión:</td>
<td>Mesa Técnica Institucional Proyecto Manera Definido de Tierras</td>
</tr>
<tr>
<td>Lugar:</td>
<td>Hotel Lugano</td>
</tr>
<tr>
<td>Fecha (dd/mm/aa):</td>
<td>27/02/2018</td>
</tr>
<tr>
<td>Hora Inicio:</td>
<td>8:30 AM</td>
</tr>
<tr>
<td>Hora Terminación:</td>
<td>3:00 PM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOMBRE</th>
<th>CARGO</th>
<th>ENTIDAD / DEPENDENCIA</th>
<th>E-MAIL</th>
<th>CELULAR</th>
<th>FIRMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alejandro Arbeláez</td>
<td>DNP / OPOS Comuna</td>
<td>DNP / OPOS</td>
<td>arbelaez.a@dnp.gov.co</td>
<td>3109649300</td>
<td></td>
</tr>
<tr>
<td>María Rodríguez</td>
<td>Comenta;</td>
<td>UPQ</td>
<td>maria.rodriguez@dnp.gov.co</td>
<td>3142395604</td>
<td></td>
</tr>
<tr>
<td>Libia Pérez</td>
<td>Prof.</td>
<td>UPRA-Tic</td>
<td>libia.perez@dnp.gov.co</td>
<td>5152159696</td>
<td></td>
</tr>
<tr>
<td>Guadalupe Oñate</td>
<td>Comenta</td>
<td>FAO</td>
<td>guadalupe.ontate@dnp.gov.co</td>
<td>5112212305</td>
<td></td>
</tr>
<tr>
<td>Álvaro Córdova</td>
<td>Comenta</td>
<td>LIC</td>
<td>alvaro.cordova@dnp.gov.co</td>
<td>3124832385</td>
<td></td>
</tr>
<tr>
<td>Oscar Lozano</td>
<td>Asist. Cambio Climático</td>
<td>UNCLD</td>
<td>oscar.lozano@dnp.gov.co</td>
<td>5122152305</td>
<td></td>
</tr>
<tr>
<td>Luis Alberto Rosas</td>
<td>Comenta</td>
<td>UPRA</td>
<td>luisrosas@dnp.gov.co</td>
<td>6211447311</td>
<td></td>
</tr>
<tr>
<td>José Patricio Ochoa</td>
<td>Prof.</td>
<td>UPRA</td>
<td>jose.patiromatico@dnp.gov.co</td>
<td>5153139491</td>
<td></td>
</tr>
<tr>
<td>Departamento Comunicaciones</td>
<td>Prof.</td>
<td>CBAC</td>
<td>departamento.comunicaciones@dnp.gov.co</td>
<td>3122504974</td>
<td></td>
</tr>
<tr>
<td>Margarita Osorio</td>
<td>Prof.</td>
<td>MASA / BAAUS</td>
<td>margarita.osorio@dnp.gov.co</td>
<td>3065694699</td>
<td></td>
</tr>
<tr>
<td>Narciso Florez</td>
<td>Prof.</td>
<td>UPR</td>
<td>narciso.florez@dnp.gov.co</td>
<td>3365618274</td>
<td></td>
</tr>
<tr>
<td>Horacio A. Balboa</td>
<td>Prof.</td>
<td>UPRA</td>
<td>horacio.balboa@dnp.gov.co</td>
<td>3162718274</td>
<td></td>
</tr>
<tr>
<td>Leobardo Pérez</td>
<td>Prof.</td>
<td>UPRA-Tic</td>
<td>leobardo.perez@dnp.gov.co</td>
<td>3105660262</td>
<td></td>
</tr>
<tr>
<td>Gabriela BETIN</td>
<td>Asesor DNP</td>
<td>DNP</td>
<td>gabrielabetin@dnp.gov.co</td>
<td>3122094346</td>
<td></td>
</tr>
</tbody>
</table>

Nombre Responsable Reunión: Junior Olano García
Tema:
Tarea Nueva Técnica Institucional

Dependencia Responsable:
Proyecto GCPL601339GFF
FAO-UPRA

Objetivo de la reunión:
Nueva Técnica Institucional Proyecto Manejo Sostenible de Tierras.

Lugar:
Hotel Lago

Fecha (dd/mm/aa):
23-02-18

Hora Inicio:
8:30 AM

Hora Terminación:

ASISTENTES

<table>
<thead>
<tr>
<th>NOMBRE</th>
<th>CARGO</th>
<th>ENTIDAD / DEPENDENCIA</th>
<th>E-MAIL</th>
<th>CELULAR</th>
<th>FIRMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jazmin Miranda Vásquez</td>
<td>Coordinadora</td>
<td>DNP / DDSS</td>
<td>nwp@cipaco.org</td>
<td>3013865320</td>
<td></td>
</tr>
<tr>
<td>Mildred Daza Letasan</td>
<td>Profesional Especializado</td>
<td>MANA / DEIKA</td>
<td>ndal@ciwa.org</td>
<td>3394332090</td>
<td></td>
</tr>
<tr>
<td>Rey E. Torres D.</td>
<td>Coordinador</td>
<td>DNR - CAR</td>
<td>retorres@uniledo.co</td>
<td>3208195846</td>
<td></td>
</tr>
<tr>
<td>Claudia Espin</td>
<td>Coordinadora Perú</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emily A. Torres</td>
<td>Consultor - Bolivia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Camilo A. Lourdes</td>
<td>Consultor FAO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carla Arenas Ayala</td>
<td>Secretaria Ejecutiva</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sandra R. R.</td>
<td>Consultora FAO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Javier Oro G.</td>
<td>Coordinador</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edmar J. Sierra</td>
<td>Especialista</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ana María Rivas</td>
<td>Secretaria</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Luiz Marina Arevalo</td>
<td>Asesora Técnica</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jhony Sierra</td>
<td>Coordinadora</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Andrea Orihuela</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nombre Responsable Reunión:
Javier Orío García
Evaluación de la degradación de las tierras a nivel local – San Juan Nepomuceno (Bolívar)

FORMATO DE ASISTENCIA A REUNIONES

<table>
<thead>
<tr>
<th>Tema:</th>
<th>Tercera Mesa Técnica Institucional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependencia Responsable:</td>
<td>Proyecto GCP/6101/33/19/FF FAO-UPRA</td>
</tr>
<tr>
<td>Objetivo de la reunión:</td>
<td>Mesa Técnica Institucional Proyecto Manejo Sostenible de Tierras</td>
</tr>
<tr>
<td>Lugar:</td>
<td>Hotel Lugano</td>
</tr>
<tr>
<td>Fecha (dd/mm/aa):</td>
<td>29/02/2018</td>
</tr>
<tr>
<td>Hora Inicio:</td>
<td>8:30 AM</td>
</tr>
<tr>
<td>Hora Terminación:</td>
<td></td>
</tr>
</tbody>
</table>

ASISTENTES

<table>
<thead>
<tr>
<th>NOMBRE</th>
<th>CARGO</th>
<th>ENTIDAD / DEPENDENCIA</th>
<th>E-MAIL</th>
<th>CELULAR</th>
<th>FIRMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Julio Alvarez</td>
<td>Consultor</td>
<td>FAO</td>
<td>julio.alvarez@fao.org</td>
<td>3142697699</td>
<td></td>
</tr>
<tr>
<td>Andino Romo Carlos</td>
<td>Ingeniero Forestal</td>
<td>Agencia Nacional de Tierras</td>
<td>andino.romo@anet.gov.co</td>
<td>3142697699</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nombre Responsable Reunión: **JUNOR OTERO GARCIA.**
Evaluación de la degradación de las tierras a nivel local – San Juan Nepomuceno (Bolívar)

Anexo 4.

PROYECTO SOPORTE DE DECISIONES PARA LA INTEGRACIÓN Y AMPLIACIÓN DE MANEJO SOSTENIBLE DE TIERRAS
GCP/GLO/337/GFF

ESTRATEGIA PARA INCORPORAR EL MANEJO SOSTENIBLE DE TIERRAS (MST) EN LA TOMA DE DECISIONES (INTEGRACIÓN EN TRES ÁMBITOS, NACIONAL, DEPARTAMENTAL Y LOCAL) CON ÉNFASIS EN INSTRUMENTOS DE PLANIFICACIÓN EN COLOMBIA

TALLER EVALUACIÓN DE LA DEGRADACIÓN DE TIERRAS, PRACTICAS MST E INSTRUMENTOS DE PLANIFICACION TERRITORIAL
ZONA PILOTO LOCAL – MUNICIPIO DE SAN JUAN NEMOPUCENO

FECHA: 11 - 12 de abril de 2018
LUGAR: San Juan Nepomuceno, Universidad de Cartagena

AGENDA

<table>
<thead>
<tr>
<th>DÍA 1: Abril 11 HORA</th>
<th>ACTIVIDAD</th>
<th>RESPONSABLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00 – 8:30 am</td>
<td>Llegada y Registro</td>
<td></td>
</tr>
<tr>
<td>8:30 – 9:15 am</td>
<td>Presentación del Proyecto Introducción al taller</td>
<td>Javier Otero</td>
</tr>
<tr>
<td>9:15 – 10:30 am</td>
<td>Evaluación de la degradación de las tierras escala local – LADA-WOCAT: Metodología, revisión mapa de Sistemas de uso</td>
<td>Julio Cesar Alvarez</td>
</tr>
<tr>
<td>10:30 – 10:45 am</td>
<td>Descanso - Refrigerio</td>
<td></td>
</tr>
<tr>
<td>10:45 – 12:30 m</td>
<td>Ejercicio: Evaluación de la degradación de tierras: tipo, grado, causas, impactos (mesas de trabajo)</td>
<td>Julio Cesar Alvarez – Eusebio Sánchez</td>
</tr>
<tr>
<td>12:30 – 1:30 pm</td>
<td>Almuerzo</td>
<td></td>
</tr>
<tr>
<td>1:30 – 2:30 pm</td>
<td>Capacitación MST: suelos, planificación, practicas</td>
<td>Carolina Olivera</td>
</tr>
<tr>
<td>2:30 – 5:00 pm</td>
<td>Ejercicio: Prácticas de Manejo sostenible de tierras - MST: Identificación, formularios, monitoreo (mesas de trabajo)</td>
<td>Eusebio Sánchez</td>
</tr>
<tr>
<td>5:00 – 5:30 pm</td>
<td>Conclusiones y recomendaciones sobre evaluación y prácticas de MST en el municipio</td>
<td>Moderador: Javier Otero</td>
</tr>
<tr>
<td>5:30 pm</td>
<td>Refrigerio</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DÍA 2: Abril 12 HORA</th>
<th>ACTIVIDAD</th>
<th>RESPONSABLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00 – 9:00 am</td>
<td>Incorporación del enfoque de MST en instrumentos de planificación territorial</td>
<td>Sandra Ruiz</td>
</tr>
<tr>
<td>9:00 – 10:30 am</td>
<td>Ejercicio: contribución al POT de San Juan Nepomuceno a través del análisis de herramientas tales como: uso del suelo, zonificación de vocación agropecuaria, estructura ecológica, análisis de degradación de las tierras y prácticas de manejo sostenible de tierras</td>
<td></td>
</tr>
<tr>
<td>10:30 – 11:00 am</td>
<td>Conversatorio: posibilidades de incorporación del estudio de evaluación de la degradación de tierras regional y local (LADA – WOCAT), en instrumentos de planificación territorial. Casos: POT, PDM, PDP; PIDAR, PDET</td>
<td></td>
</tr>
<tr>
<td>11:00 am</td>
<td>Descanso - Refrigerio</td>
<td></td>
</tr>
<tr>
<td>11:00 – 1:30 pm</td>
<td>Ejercicio en terreno: muestreo, indicadores de impacto.</td>
<td>Eusebio Sánchez</td>
</tr>
<tr>
<td>1:30 – 2:30 pm</td>
<td>Almuerzo</td>
<td></td>
</tr>
<tr>
<td>2:30 – 3:00 pm</td>
<td>Conclusiones y recomendaciones</td>
<td></td>
</tr>
</tbody>
</table>
Anexo 5.

CUERSONARIO (Q2, Q3)

TABLA MATRIZ

Por favor, complete una tabla por unidad de mapeo! Haga las copias que necesite de esta tabla para completar con la información de otras unidades de mapeo.

<table>
<thead>
<tr>
<th>Nombre: Grupo 1</th>
<th>País: Colombia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identificación de la Unidad de Mapeo: SJN Agroforestal semi-húmedo quebrado</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sistema/Clasificación del Uso de la Tierra (Paso 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUS</td>
</tr>
<tr>
<td>--------------------------------</td>
</tr>
<tr>
<td>Agroforestal semi-húmedo quebrado</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Degradación de la Tierra (Paso 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Tipo</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>Wt</td>
</tr>
<tr>
<td>Cp</td>
</tr>
</tbody>
</table>
CUESTIONARIO (Q2, Q3)

TABLA MATRIZ

Por favor, complete una tabla por unidad de mapeo! Haga las copias que necesite de esta tabla para completar con la información de otras unidades de mapeo.

Nombre: Grupo 1

País: Colombia

Identificación de la Unidad de Mapeo: SJN Silvopastoril semi-húmedo ondulado a plano

<table>
<thead>
<tr>
<th>Sistema/Clasificación del Uso de la Tierra (Paso 2)</th>
<th>LUS</th>
<th>a) Tendencia del Área</th>
<th>b) Intensidad de la Tendencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silvopastoril semi-húmedo ondulado a plano</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Degradación de la Tierra (Paso 3)</th>
<th>a) Tipo</th>
<th>b) Extensión</th>
<th>c) Grado</th>
<th>d) Tasa</th>
<th>e) Causas directas</th>
<th>f) Causas indirectas</th>
<th>g) Impacto sobre los SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>ii</td>
<td>iii</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wo</td>
<td>15%</td>
<td>1</td>
<td>1</td>
<td>s1, se, c1, g1, g2</td>
<td>e, h</td>
<td></td>
<td>P3 (-1)</td>
</tr>
<tr>
<td>Wt</td>
<td>10%</td>
<td>1</td>
<td>1</td>
<td>s1, c1, c7, f5</td>
<td>r, e, h</td>
<td></td>
<td>E3 (-1)</td>
</tr>
</tbody>
</table>
CUESTIONARIO (Q2, Q3)

TABLA MATRIZ

Por favor, complete una tabla por unidad de mapeo! Haga las copias que necesite de esta tabla para completar con la información de otras unidades de mapeo.

Nombre: Grupo 1
País: Colombia

Identificación de la Unidad de Mapeo: SJN Silvopastoril semi-húmedo quebrado

<table>
<thead>
<tr>
<th>Sistema/Clasificación del Uso de la Tierra (Paso 2)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LUS</td>
<td>a) Tendencia del Área</td>
</tr>
<tr>
<td>Silvopastoril semi-húmedo quebrado</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Degradación de la Tierra (Paso 3)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Tipo</td>
<td>b) Extensión</td>
</tr>
<tr>
<td>i</td>
<td>ii</td>
</tr>
<tr>
<td>Wt</td>
<td>10%</td>
</tr>
<tr>
<td>Cp</td>
<td>15%</td>
</tr>
<tr>
<td>Pc</td>
<td>10%</td>
</tr>
</tbody>
</table>
CUESTIONARIO (Q2, Q3)

TABLA MATRIZ
Por favor, complete una tabla por unidad de mapeo! Haga las copias que necesite de esta tabla para completar con la información de otras unidades de mapeo.

Nombre: Grupo 2
País: Colombia

Identificación de la Unidad de Mapeo: SJN Ganadería semi-húmedo ondulado a plano

<table>
<thead>
<tr>
<th>Sistema/Clasificación del Uso de la Tierra (Paso 2)</th>
<th>LUS</th>
<th>a) Tendencia del Área</th>
<th>b) Intensidad de la Tendencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ganadería semi-húmedo ondulado a plano</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Degradación de la Tierra (Paso 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Tipo</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>Pc</td>
</tr>
<tr>
<td>Cn</td>
</tr>
<tr>
<td>Bh</td>
</tr>
</tbody>
</table>
CUESTIONARIO (Q2, Q3)

TABLA MATRIZ
Por favor, complete una tabla por unidad de mapeo! Haga las copias que necesite de esta tabla para completar con la información de otras unidades de mapeo.

Nombre: Grupo 2 País: Colombia

Identificación de la Unidad de Mapeo: SJN Ganadería semi-húmedo quebrado

<table>
<thead>
<tr>
<th>Sistema/Clasificación del Uso de la Tierra (Paso 2)</th>
<th>a) Tendencia del Área</th>
<th>b) Intensidad de la Tendencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ganadería semi-húmedo quebrado</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Degradación de la Tierra (Paso 3)</th>
<th>a) Tipo</th>
<th>b) Extensión</th>
<th>c) Grado</th>
<th>d) Tasa</th>
<th>e) Causas directas</th>
<th>f) Causas indirectas</th>
<th>g) Impacto sobre los SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>ii</td>
<td>iii</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pc</td>
<td></td>
<td>70%</td>
<td>2</td>
<td>1</td>
<td>s1, f4, g1, n1, n5</td>
<td>t, h, e, g</td>
<td>P1, E4, E8, S3, S4 (-2)</td>
</tr>
<tr>
<td>Cn</td>
<td></td>
<td>30%</td>
<td>1</td>
<td>1</td>
<td>s1, f4, g1, n1, n5</td>
<td>t, h, e</td>
<td>P1, E2, E5, S4 (-2)</td>
</tr>
<tr>
<td>Bh</td>
<td></td>
<td>90%</td>
<td>3</td>
<td>1</td>
<td>s1, f4, g1, n1, n5</td>
<td>t, h, e, g</td>
<td>P1, E1, E7, S4 (-3)</td>
</tr>
</tbody>
</table>
Evaluación de la degradación de las tierras a nivel local – San Juan Nepomuceno (Bolívar)

CUESTIONARIO (Q2, Q3)

TABLA MATRIZ
Por favor, complete una tabla por unidad de mapeo! Haga las copias que necesite de esta tabla para completar con la información de otras unidades de mapeo.

Nombre: Grupo 3
País: Colombia
Identificación de la Unidad de Mapeo: SJN Cultivo permanente palma semi-árido ondulado a plano

<table>
<thead>
<tr>
<th>Sistema/Clasificación del Uso de la Tierra (Paso 2)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LUS</td>
<td>a) Tendencia del Área</td>
<td>b) Intensidad de la Tendencia</td>
</tr>
<tr>
<td>Cultivo permanente palma semi-árido ondulado a plano</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Degradación de la Tierra (Paso 3)</th>
<th>a) Tipo</th>
<th>b) Extensión</th>
<th>c) Grado</th>
<th>d) Tasa</th>
<th>e) Causas directas</th>
<th>f) Causas indirectas</th>
<th>g) Impacto sobre los SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>ii</td>
<td>iii</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bh</td>
<td>80%</td>
<td>2</td>
<td>2</td>
<td>s1, q1</td>
<td>e, g</td>
<td>E7 (-1), S4 (-2)</td>
<td></td>
</tr>
<tr>
<td>Pc</td>
<td>30%</td>
<td>1</td>
<td>1</td>
<td>s1, c5, q1</td>
<td>r, e</td>
<td>P1, E4, E7 (-1)</td>
<td></td>
</tr>
</tbody>
</table>
Evaluación de la degradación de las tierras a nivel local – San Juan Nepomuceno (Bolívar)

CUESTIONARIO (Q2, Q3)

TABLA MATRIZ
Por favor, complete una tabla por unidad de mapeo! Haga las copias que necesite de esta tabla para completar con la información de otras unidades de mapeo.

Nombre: Grupo 3
País: Colombia
Identificación de la Unidad de Mapeo: SJN Silvopastoril semi-árido ondulado a plano

<table>
<thead>
<tr>
<th>Sistema/Clasificación del Uso de la Tierra (Paso 2)</th>
<th>a) Tendencia del Área</th>
<th>b) Intensidad de la Tendencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silvopastoril semi-árido ondulado a plano</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Degradación de la Tierra (Paso 3)</th>
<th>a) Tipo</th>
<th>b) Extensión</th>
<th>c) Grado</th>
<th>d) Tasa</th>
<th>e) Causas directas</th>
<th>f) Causas indirectas</th>
<th>g) Impacto sobre los SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cn</td>
<td>70%</td>
<td>2</td>
<td>2</td>
<td>s1, g1</td>
<td>e</td>
<td></td>
<td>P1, E2, E7 (-2)</td>
</tr>
<tr>
<td>Pc</td>
<td>80%</td>
<td>2</td>
<td>2</td>
<td>s1, g1</td>
<td>e, w</td>
<td></td>
<td>P1, E4, E7 (-2)</td>
</tr>
<tr>
<td>Bh</td>
<td>50%</td>
<td>2</td>
<td>2</td>
<td>g1</td>
<td>e, w</td>
<td></td>
<td>P1, E7 (-1)</td>
</tr>
</tbody>
</table>
CUESTIONARIO (Q2, Q3)

TABLA MATRIZ
Por favor, complete una tabla por unidad de mapeo! Haga las copias que necesite de esta tabla para completar con la información de otras unidades de mapeo.

Nombre: Grupo 3
País: Colombia

Identificación de la Unidad de Mapeo: SJN Silvopastoril semi-árido quebrado

<table>
<thead>
<tr>
<th>Sistema/Clasificación del Uso de la Tierra (Paso 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUS</td>
</tr>
<tr>
<td>Silvopastoril semi-árido quebrado</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Degradación de la Tierra (Paso 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
</tr>
<tr>
<td>Wt</td>
</tr>
<tr>
<td>Cn</td>
</tr>
<tr>
<td>Pc</td>
</tr>
</tbody>
</table>
Evaluación de la degradación de las tierras a nivel local – San Juan Nepomuceno (Bolívar)

CUESTIONARIO (Q2, Q3)

TABLA MATRIZ
Por favor, complete una tabla por unidad de mapeo! Haga las copias que necesite de esta tabla para completar con la información de otras unidades de mapeo.

Nombre: Grupo 4
País: Colombia
Identificación de la Unidad de Mapeo: SJN Ganadería semi-árido ondulado a plano

<table>
<thead>
<tr>
<th>Sistema/Clasificación del Uso de la Tierra (Paso 2)</th>
<th>LUS</th>
<th>a) Tendencia del Área</th>
<th>b) Intensidad de la Tendencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ganadería semi-árido ondulado a plano</td>
<td></td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Degradación de la Tierra (Paso 3)</th>
<th>a) Tipo</th>
<th>b) Extensión</th>
<th>c) Grado</th>
<th>d) Tasa</th>
<th>e) Causas directas</th>
<th>f) Causas indirectas</th>
<th>g) Impacto sobre los SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cn</td>
<td>i</td>
<td>ii</td>
<td>iii</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>80%</td>
<td>2</td>
<td>1</td>
<td>s1, g1, w1</td>
<td>e, g</td>
<td>P1, E2, E4, E7, S1 (-2)</td>
<td></td>
</tr>
<tr>
<td>Pc</td>
<td>80%</td>
<td>2</td>
<td>1</td>
<td>s1, g1, w1</td>
<td>e, g</td>
<td>P1, E2, E4, E7, S1 (-2)</td>
<td></td>
</tr>
<tr>
<td>Bh</td>
<td>100%</td>
<td>2</td>
<td>2</td>
<td>s1, f4</td>
<td>e, g</td>
<td>P1, E1, E3, E5, E7, S1 (-2)</td>
<td></td>
</tr>
</tbody>
</table>
CUESTIONARIO (Q2, Q3)

TABLA MATRIZ

Por favor, complete una tabla por unidad de mapeo! Haga las copias que necesite de esta tabla para completar con la información de otras unidades de mapeo.

Nombre: Grupo 4
País: Colombia

Identificación de la Unidad de Mapeo: SJN Ganadería semi-árido quebrado

<table>
<thead>
<tr>
<th>Sistema/Clasificación del Uso de la Tierra (Paso 2)</th>
<th>a) Tendencia del Área</th>
<th>b) Intensidad de la Tendencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ganadería semi-árido quebrado</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Degradación de la Tierra (Paso 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Tipo</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>Pc</td>
</tr>
<tr>
<td>Cn</td>
</tr>
<tr>
<td>Bh</td>
</tr>
</tbody>
</table>
CUESTIONARIO (Q2, Q3)

TABLA MATRIZ
Por favor, complete una tabla por unidad de mapeo! Haga las copias que necesite de esta tabla para completar con la información de otras unidades de mapeo.

Nombre: Grupo 4

País: Colombia

Identificación de la Unidad de Mapeo: SJN Plantación forestal semi-árido quebrado

<table>
<thead>
<tr>
<th>Sistema/Clasificación del Uso de la Tierra (Paso 2)</th>
<th></th>
<th>b) Intensidad de la Tendencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plantación forestal semi-árido quebrado</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Degradación de la Tierra (Paso 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Tipo</td>
</tr>
<tr>
<td>-----------------------------------</td>
</tr>
<tr>
<td>i</td>
</tr>
<tr>
<td>Bh</td>
</tr>
<tr>
<td>Bs</td>
</tr>
</tbody>
</table>
Evaluación de la degradación de las tierras a nivel local – San Juan Nepomuceno (Bolívar)

Anexo 6.

FORMATO DE ASISTENCIA A REUNIONES

<table>
<thead>
<tr>
<th>Tema:</th>
<th>Socialización Proyecto con énfasis en la evaluación de la degradación de tierras</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependencia Responsable:</td>
<td>Proyecto GDO/GRO/239/GFF</td>
</tr>
<tr>
<td>Objetivo de la reunión:</td>
<td>Socializar el proyecto y debutar la metodología de FST</td>
</tr>
<tr>
<td>Lugar:</td>
<td>IDEAM</td>
</tr>
<tr>
<td>Fecha (dd/mm/año):</td>
<td>02/02/18</td>
</tr>
<tr>
<td>Hora Inicio:</td>
<td>09:00 a.m.</td>
</tr>
<tr>
<td>Hora Termino:</td>
<td>11:30 a.m.</td>
</tr>
</tbody>
</table>

ASISTENTES

<table>
<thead>
<tr>
<th>NOMBRE</th>
<th>CARGO</th>
<th>ENTIDAD / DEPENDENCIA</th>
<th>E-MAIL</th>
<th>CELULAR</th>
<th>FIRMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Julio Gómez</td>
<td>Coordinador</td>
<td>FAO</td>
<td>Julio.Gomez@nancito.com</td>
<td>3161735376</td>
<td></td>
</tr>
<tr>
<td>Ana María Hernández</td>
<td>Prof. Asociado</td>
<td>IDEAM</td>
<td>amhernandez@nancito.com</td>
<td>3161735376</td>
<td></td>
</tr>
<tr>
<td>Carolina Palma</td>
<td>Secretaria</td>
<td>IDEAM</td>
<td>carpalma@nancito.com</td>
<td>3161735376</td>
<td></td>
</tr>
<tr>
<td>Carlos Lagos</td>
<td>Coordinador</td>
<td>IDEAM</td>
<td>carlalagos@nancito.com</td>
<td>3161735376</td>
<td></td>
</tr>
</tbody>
</table>

Nombre Responsable Reunión:

Representación FAO Colombia - Edificio Anciano y Velásquez - Calle 72 No. 1-401 Oficina 702 – Bogotá

Teléfono: +57-1-2832883 – Fax: +57-1-2835594 – Correo electrónico: FAO-CO@fao.org
Anexo 7.

CUESTIONARIO (Q4)

TABLA MATRIZ

Por favor, complete una tabla por unidad de mapeo! Haga las copias que necesite de esta tabla para completar con la información de otras unidades de mapeo.

Nombre: Grupo 1

Identificación de la Unidad de Mapeo: SJJN Agroforestal semi-húmedo quebrado

<table>
<thead>
<tr>
<th>Conservación (Paso 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Nombre de la práctica</td>
</tr>
<tr>
<td>Siembra de frutales y maderables</td>
</tr>
</tbody>
</table>

CUESTIONARIO (Q4)

TABLA MATRIZ

Por favor, complete una tabla por unidad de mapeo! Haga las copias que necesite de esta tabla para completar con la información de otras unidades de mapeo.

Nombre: Grupo 1

Identificación de la Unidad de Mapeo: SJJN Silvopastoril semi-húmedo ondulado a plano

<table>
<thead>
<tr>
<th>Conservación (Paso 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Nombre de la práctica</td>
</tr>
<tr>
<td>División y rotación de potreros</td>
</tr>
</tbody>
</table>
Evaluación de la degradación de las tierras a nivel local – San Juan Nepomuceno (Bolívar)

CUESTIONARIO (Q4)

TABLA MATRIZ
Por favor, complete una tabla por unidad de mapeo! Haga las copias que necesite de esta tabla para completar con la información de otras unidades de mapeo.

Nombre: Grupo 1

Identificación de la Unidad de Mapeo: SJN Silvopastoral semi-húmedo quebrado

<table>
<thead>
<tr>
<th>a) Nombre de la práctica</th>
<th>b) Grupo</th>
<th>e) Área (%)</th>
<th>f) Degradación</th>
<th>g) Efectividad</th>
<th>i) Impacto práctica / SE</th>
<th>j) Período (Años)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Árboles dispersos</td>
<td>AF, GR, AP, WH</td>
<td>15</td>
<td>Wt, Pc</td>
<td>1</td>
<td>E3, E4, P1</td>
<td>10</td>
</tr>
</tbody>
</table>

CUESTIONARIO (Q4)

TABLA MATRIZ
Por favor, complete una tabla por unidad de mapeo! Haga las copias que necesite de esta tabla para completar con la información de otras unidades de mapeo.

Nombre: Grupo 2

Identificación de la Unidad de Mapeo: SJN Ganadería semi-húmedo ondulado a plano

<table>
<thead>
<tr>
<th>a) Nombre de la práctica</th>
<th>b) Grupo</th>
<th>e) Área (%)</th>
<th>f) Degradación</th>
<th>g) Efectividad</th>
<th>i) Impacto práctica / SE</th>
<th>j) Período (Años)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renovación de pasturas</td>
<td>RO</td>
<td>10</td>
<td>Pc, Cn, Bh</td>
<td>1</td>
<td>E4, S3, E7</td>
<td>10</td>
</tr>
</tbody>
</table>
CUESTIONARIO (Q4)

TABLA MATRIZ

Por favor, complete una tabla por unidad de mapeo! Haga las copias que necesite de esta tabla para completar con la información de otras unidades de mapeo.

Nombre: Grupo 2

Identificación de la Unidad de Mapeo: SJN Ganadería semi-húmedo quebrado

<table>
<thead>
<tr>
<th>a) Nombre de la práctica</th>
<th>b) Grupo</th>
<th>c) Área (%)</th>
<th>d) Degradación</th>
<th>e) Efectividad</th>
<th>j) Impacto práctica / SE</th>
<th>j) Periodo (Años)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotación de potreros</td>
<td>RO</td>
<td>100</td>
<td>Pc, Cn, Bh</td>
<td>1</td>
<td>E4, S3, E7</td>
<td>> 30</td>
</tr>
</tbody>
</table>

CUESTIONARIO (Q4)

TABLA MATRIZ

Por favor, complete una tabla por unidad de mapeo! Haga las copias que necesite de esta tabla para completar con la información de otras unidades de mapeo.

Nombre: Grupo 3

Identificación de la Unidad de Mapeo: SJN Cultivo permanente palma semi-árido ondulado a plano

<table>
<thead>
<tr>
<th>a) Nombre de la práctica</th>
<th>b) Grupo</th>
<th>c) Área (%)</th>
<th>d) Degradación</th>
<th>e) Efectividad</th>
<th>j) Impacto práctica / SE</th>
<th>j) Periodo (Años)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reforestación y protección forestal</td>
<td>AP</td>
<td>100</td>
<td>Bh, Pc</td>
<td>2</td>
<td>P1</td>
<td>1</td>
</tr>
</tbody>
</table>
Evaluación de la degradación de las tierras a nivel local – San Juan Nepomuceno (Bolívar)

CUESTIONARIO (Q4)

TABLA MATRIZ
Por favor, complete una tabla por unidad de mapeo! Haga las copias que necesite de esta tabla para completar con la información de otras unidades de mapeo.

Nombre: Grupo 3

Identificación de la Unidad de Mapeo: SJN Silvopastoril semi-árido ondulado a plano

<table>
<thead>
<tr>
<th>Conservación (Paso 4)</th>
<th>a) Nombre de la práctica</th>
<th>b) Grupo</th>
<th>e) Área (%)</th>
<th>f) Degradación</th>
<th>g) Efectividad</th>
<th>i) Impacto práctica / SE</th>
<th>j) Período (Años)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Siembra de árboles dispersos en pasturas bajas</td>
<td>AF</td>
<td>50</td>
<td>Wt, Cn, Pc</td>
<td>3</td>
<td>P1</td>
<td>2</td>
</tr>
</tbody>
</table>

CUESTIONARIO (Q4)

TABLA MATRIZ
Por favor, complete una tabla por unidad de mapeo! Haga las copias que necesite de esta tabla para completar con la información de otras unidades de mapeo.

Nombre: Grupo 3

Identificación de la Unidad de Mapeo: SJN Silvopastoril semi-árido quebrado

<table>
<thead>
<tr>
<th>Conservación (Paso 4)</th>
<th>a) Nombre de la práctica</th>
<th>b) Grupo</th>
<th>e) Área (%)</th>
<th>f) Degradación</th>
<th>g) Efectividad</th>
<th>i) Impacto práctica / SE</th>
<th>j) Período (Años)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Siembra de árboles dispersos en pasturas</td>
<td>AF</td>
<td>40</td>
<td>Wt, Cn, Pc</td>
<td>2</td>
<td>P1</td>
<td>2</td>
</tr>
</tbody>
</table>
Evaluación de la degradación de las tierras a nivel local – San Juan Nepomuceno (Bolívar)

CUESTIONARIO (Q4)

TABLA MATRIZ

Por favor, complete una tabla por unidad de mapeo! Haga las copias que necesite de esta tabla para completar con la información de otras unidades de mapeo.

Nombre: Grupo 4

Identificación de la Unidad de Mapeo: SJN Ganadería semi-árido ondulado a plano

<table>
<thead>
<tr>
<th>a) Nombre de la práctica</th>
<th>b) Grupo</th>
<th>e) Área (%)</th>
<th>f) Degradación</th>
<th>g) Efectividad</th>
<th>i) Impacto práctica / SE</th>
<th>j) Período (Años)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotación de potreros</td>
<td>RO</td>
<td>100</td>
<td>Pc, Cn, Bh</td>
<td>1</td>
<td>P1, E4, E7</td>
<td>> 30</td>
</tr>
</tbody>
</table>

CUESTIONARIO (Q4)

TABLA MATRIZ

Por favor, complete una tabla por unidad de mapeo! Haga las copias que necesite de esta tabla para completar con la información de otras unidades de mapeo.

Nombre: Grupo 4

Identificación de la Unidad de Mapeo: SJN Ganadería semi-árido quebrado

<table>
<thead>
<tr>
<th>a) Nombre de la práctica</th>
<th>b) Grupo</th>
<th>e) Área (%)</th>
<th>f) Degradación</th>
<th>g) Efectividad</th>
<th>i) Impacto práctica / SE</th>
<th>j) Período (Años)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotación de potreros</td>
<td>RO</td>
<td>100</td>
<td>Pc, Cn, Bh</td>
<td>1</td>
<td>P1, E4, E7</td>
<td>> 30</td>
</tr>
</tbody>
</table>
CUESTIONARIO (Q4)

TABLA MATRIZ
Por favor, complete una tabla por unidad de mapeo! Haga las copias que necesite de esta tabla para completar con la información de otras unidades de mapeo.

Nombre: Grupo 4

Identificación de la Unidad de Mapeo: SJN Plantación forestal semi-árido quebrado

<table>
<thead>
<tr>
<th>a) Nombre de la práctica</th>
<th>b) Grupo</th>
<th>e) Área (%)</th>
<th>f) Degradación</th>
<th>g) Efectividad</th>
<th>i) Impacto práctica / SE</th>
<th>j) Periodo (Años)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barbechos</td>
<td>RO</td>
<td>100</td>
<td>Bh, Bs</td>
<td>2</td>
<td>P1, E7, S4</td>
<td>-2</td>
</tr>
</tbody>
</table>
Anexo 8.

CUESTIONARIO (Q5)

Nombre: Grupo 1

<table>
<thead>
<tr>
<th>Identificación de la Unidad de Mapeo</th>
<th>Recomendaciones de expertos</th>
<th>Uso propuesto</th>
<th>Prácticas propuestas</th>
</tr>
</thead>
<tbody>
<tr>
<td>SJN Agroforestal semi-húmedo quebrado</td>
<td>(P) PREVENCIÓN</td>
<td>Agroforestal semi-húmedo quebrado</td>
<td>Cultivos perennes. Curvas a nivel. Zanjas de infiltración. Terrazas</td>
</tr>
<tr>
<td>SJN Silvopastoril semi-húmedo quebrado</td>
<td>(P) PREVENCIÓN</td>
<td>Agrosilvopastoril semi-húmedo quebrado</td>
<td>Mayor intensidad de árboles frutales, maderables y bancos protélicos establecidos en curvas de nivel. Cercas vivas</td>
</tr>
<tr>
<td>SJN Silvopastoril semi-húmedo ondulado a plano</td>
<td>(M) MITIGACIÓN</td>
<td>Silvopastoril semi-húmedo ondulado a plano</td>
<td>Mejoramiento de pasturas. División de potreros. Rotación de ciclos cortos</td>
</tr>
</tbody>
</table>

CUESTIONARIO (Q5)

Nombre: Grupo 2

<table>
<thead>
<tr>
<th>Identificación de la Unidad de Mapeo</th>
<th>Recomendaciones de expertos</th>
<th>Uso propuesto</th>
<th>Prácticas propuestas</th>
</tr>
</thead>
</table>
Evaluación de la degradación de las tierras a nivel local – San Juan Nepomuceno (Bolívar)

CUESTIONARIO (Q5)

Nombre: Grupo 3

<table>
<thead>
<tr>
<th>Identificación de la Unidad de Mapeo</th>
<th>Recomendaciones de expertos</th>
<th>Uso propuesto</th>
<th>Prácticas propuestas</th>
</tr>
</thead>
<tbody>
<tr>
<td>SJN Silvopastoril semi-árido ondulado a plano</td>
<td>(M) MITIGACIÓN</td>
<td>Silvopastoril semi-árido ondulado a plano</td>
<td>Utilizar pasturas mejoradas. Rotación permanente de los animales. Aumentar el número de árboles (especies nativas). Banco de silos y proteínas.</td>
</tr>
<tr>
<td>SJN Cultivo permanente palma semi-árido ondulado a plano</td>
<td>(M) MITIGACIÓN</td>
<td>Cultivo permanente semi-árido ondulado a plano</td>
<td>Abonos orgánicos. Reconversión de residuos de cosecha. Infraestructura para la recolección de racimos (vía aérea por camuchas). Disminuir carga química en el paquete tecnológico. Utilizar insectisidas y fumisidas orgánicos. Recuperación de microcuencas con especies nativas. Disminución del uso de maquinaria pesada.</td>
</tr>
</tbody>
</table>
CUESTIONARIO (Q5)

Nombre: Grupo 4

<table>
<thead>
<tr>
<th>Identificación de la Unidad de Mapeo</th>
<th>Recomendaciones de expertos</th>
<th>Uso propuesto</th>
<th>Prácticas propuestas</th>
</tr>
</thead>
</table>
BIBLIOGRAFÍA

PISCITELLI, M. (15 de Julio de 2015). *El suelo, un recurso natural y un medio dinámico.* Obtenido de unicen: https://www.unicen.edu.ar/content/degradación-de-suelos

SCA. (2018). *Plan Básico de Ordenamiento Territorial en San Juan Nepomuceno, Bolívar.* Barranquilla: Sociedad Colombiana de Arquitectos,

