

Food and Agriculture Organization of the United Nations

The FAO-WOCAT Mapping Approach

Cesar Luis Garcia LDN and RS expert for FAO and WOCAT 18.10.2023

Asian knowledge hub on sustainable soil and land management

Share

Learn

LAND IS OUR PRIMARY SOURCE OF NATURAL CAPITAL

LAND DEGRADATION is the loss or reduction in land productivity. When land is degraded, we lose natural capital, and thus all the benefits that land and nature contribute to people.



$\sim \sim \sim \sim$

LDN provides a framework for a balanced approach, which considers trade-offs and anticipates new degradation

GRADEDLAND

LOGIN

Q

How to add data: UNCCD Reporting process

WOCAT

- Guidelines
- Short video

LAND DEGRADATION is the loss or reduction in land productivity. When land is degraded, we lose natural capital, and thus all the benefits that land and nature contribute to people.

Dowinoau

1.8 MB Download

More information on WOCAT in PRAIS 4

WOCAT for PRAIS 4

) stakeholders

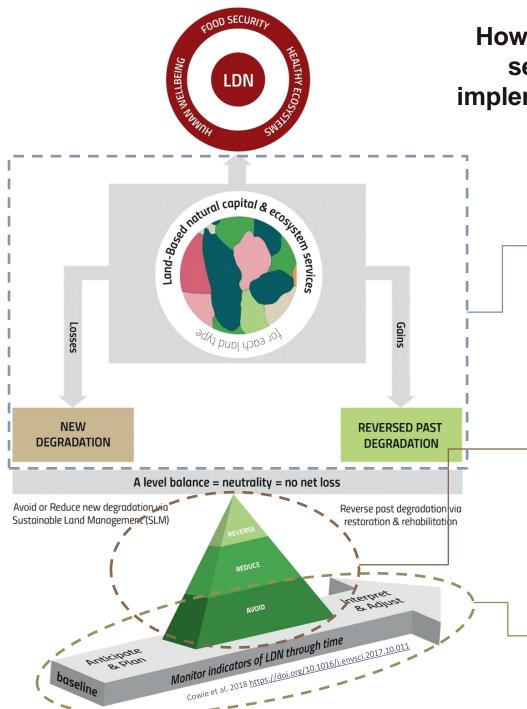
d Database for ncouraged to lementation

GLOSSARY

United Nations Convention to Combat Desertification

GET INVOLVED

of entering SLM


» Read more about the UNCCD-WOCAT-Partnership

ductory video WOCAT SLM Database

Asian knowledge hub on sustainable soil and land management Share, Learn, Inspire

How to support projects and countries in decision making for setting targets, LUP, defining restoration priorities, SLM implementation strategies, investment allocation, monitoring the LDN impact pathway, etc.

> At landscape level there are SDGs synergies, that include diverse land and water dynamics in particular socioeconomic settings. These requires multidisciplinary, multi-institutional and bottom up approaches that guaranty ownership.

To work with the hierarchy response means to answer a key questions of Land Use Planning, like: What to do and Where?

Is the intervention working (**Impact**)?

Requires producing information across scales, on many key variables, using diverse methodologies and data sources to go beyond simple LD indicator mapping.

Achieving Land Degradation Neutrality

15 LIFE ON LAND

United Nations **CBD** Convention to Combat Desertification

Indicator 15.1.1: Forest area as a proportion of total land area

Indicator 15.2.1: Progress towards sustainable forest management

Synergizing SDG 15 Indicator 15.3.1: Proportion of land that is degraded over total land area

Indicator 15.4.2: Mountain Green Cover Index

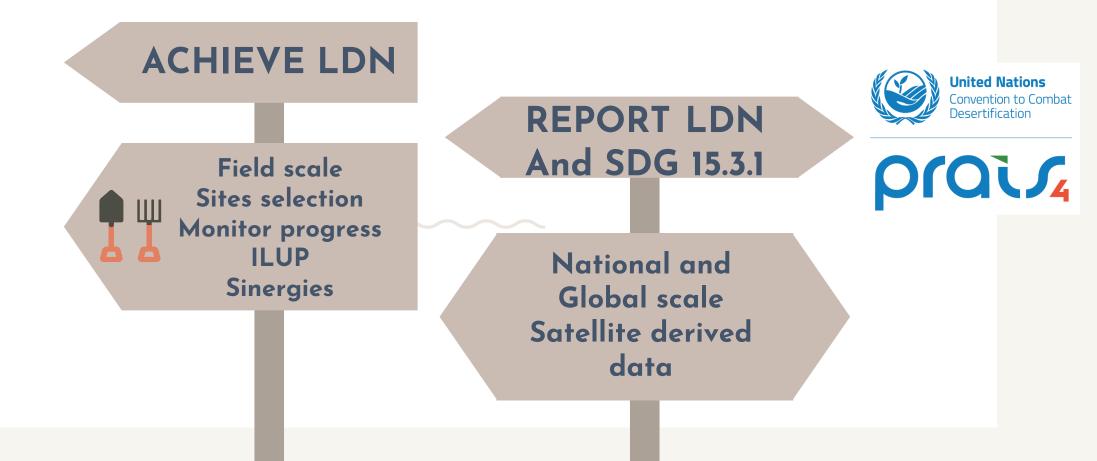
MAPPING LAND DEGRADATION

Is needed for...

Prioritize areas for interventions

Decide what to do where (informed decision making)

Support Land Use Planning processes


Establish and refine national targets and commitments

Optimize investments by finding synergies among UN conventions and SDGs

Monitor progress towards LAND DEGRADATION NEUTRALITY (LDN)

Report to UNCCD

Coherence of spatially explicit contexts for site selection and monitoring across scales

MAPPING LAND DEGRADATION IS NOT EASY

Causes, processes and impacts + LD change over space and time

Estimations need to make sense across scales

"Land degradation cannot be globally mapped by a single indicator or through any arithmetic or modelled combination of variables"

WAD, 2018

SDG 15.3.1 PROPORTION OF LAND THAT IS DEGRADED

United Nations Convention to Combat Desertification

TRENDS IN LAND COVER

TRENDS IN LAND PRODUCTIVITY

"While it is difficult for a single indicator to fully capture the state or condition of the land, the sub-indicators are **proxies** to monitor the essential variables that reflect the capacity of the land to deliver ecosystem services" Sims et al. 2021

PRAIS 4 REPORT

Tiered approach

ριαιλ

Spatial Layers

S01

S02

S03

S04

S05

Trinidad and Tobago – Revision 1, 01/04/2022 13:36

Other files for Reporting

List of Spatial Layers for Reporting

Reporting forms

• S0-1: To improve the condition of affected ecosystems, combat desertification/land degradation, promote sustainable land management and contribute to land of

- SO-2: To improve the living conditions of affected populations.
- S0-3: To mitigate, adapt to, and manage the effects of drought in order to enhance resilience of vulnerable populations and ecosystems.
- S0-4: To generate global environmental benefits through effective implementation of the United Nations Convention to Combat Desertification.
- SO-5: To mobilize substantial and additional financial and non-financial resources to support the implementation of the Convention by building effective partnersh
- IF: Implementation Framework
- Al: Additional indicators
- RC: Recalculations
- AA: Affected areas

Comments for this revision View Comments

National Report No PDF report generation in progress

Create PDF report

Pre-loaded with Tier 1 data – Global Models

United Nations Convention to Combat

environment programme

Funded by the Global Environment Facility and supported by the United Nations Environment Programme

partnersł

SDG 15.3.1: One Out All Out...

... what is the impact of using different global LPD models?

World

https://maps.tools4ldn.org/

Earth Engine Apps

FAO

WOCAT

26.35

22.68

29.13

37.16

Stable Improvement

JRC

TE

7.24 15.94

8.93 11.47

12.03 13.21

12.8 21.93

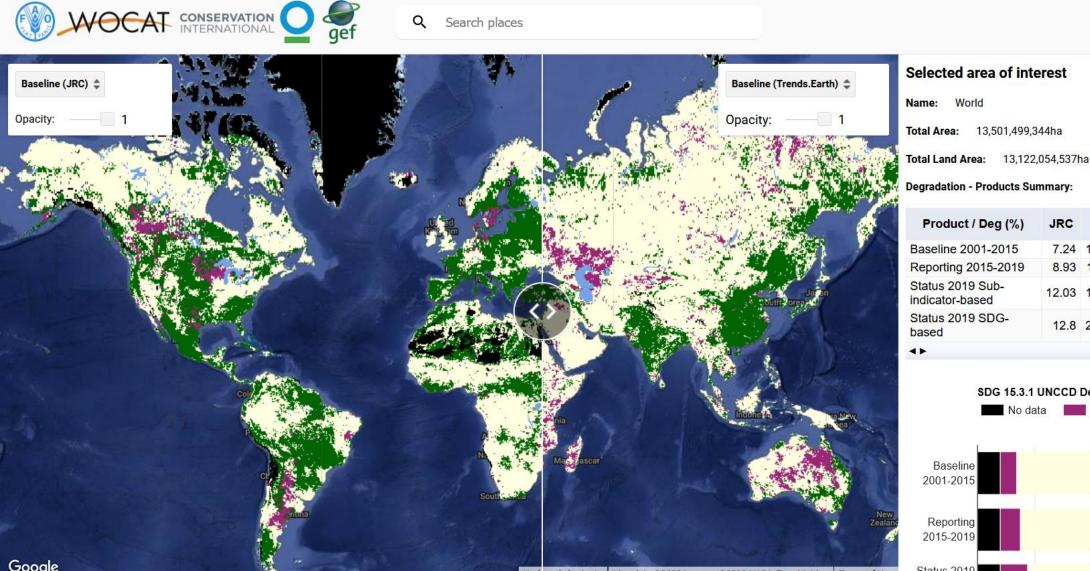
Degra.

SDG 15.3.1 UNCCD Default (JRC)

No data

FAO 2

30.03


30.48

33.43

44.1

Z

Simplified

ABIDJAN 2022

HOW CAN WE IMPROVE OUR ESTIMATIONS?

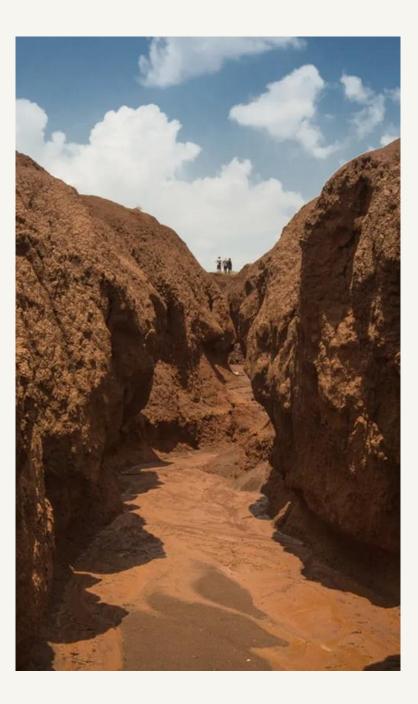
CHOOSE BEST AVAILABLE DATA

Increased availability of EOs, national data

EXPLORE DIFFERENT ALGORITHMS

Data is malleable

Participatory processes improve estimations and create ownership


ESTIMATE UNCERTAINTIES

Map uncertainties and obtain error adjusted area estimates

DEFAULT VS REPORTED

Countries used alternative data sources and integrated expert knowledge

There were BIG differences...

SO1-4.T1: National estimates of the total area of degraded land (in km²), and the proportion of degraded land relative to the total land area

	Total area of degraded land (km²)	Proportion of degraded land over the total land area (%) (i)	5
Baseline Period (i)	6880	9.4	Def
Reporting Period (i)	7577	10.4	
Change in degraded extent $(\bar{\mathbf{i}})$	697		

SO1-4.T1: Estimaciones nacionales de la superficie total de las tierras degradadas (en kilómetros cuadrados), y proporción de tierras degradadas en comparación con la superficie terrestre total

	Superficie total de las tierras degradadas (km²)	Proporción de tierras degradadas en comparación con la superficie terrestre total (%)		
Período de Referencia	25 891	35,2		
Período sobre el que se informa	23 679	Reported 32,2		
Variación de la extensión de las tierras degradadas	-2212	ed		

SO1-4.T1: National estimates of the total area of degraded land (in km²), and the proportion of degraded land relative to the total land area

	Total area of degraded land (km²)	Proportion of degraded land over the total land area (%) (i)	Def
Baseline Period (j)	85348	7.6	Default
Reporting Period (i)	98370	8.8	
Change in degraded extent $(\rm i)$	13022		

SO1-4.T1: Estimaciones nacionales de la superficie total de las tierras degradadas (en kilómetros cuadrados), y proporción de tierras degradadas en comparación con la superficie terrestre total

	Superficie total de las tierras degradadas (km²)	Proporción de tierras degradadas en comparación con la superficie terrestre total (%)
Período de Referencia	331 897	28,8
Período sobre el que se informa	343 934	29 ,8
Variación de la extensión de las tierras degradadas	12037	Reported

Default

SO1-4.T1: National estimates of the total area of degraded land (in km²), and the proportion of degraded land relative to the total land area

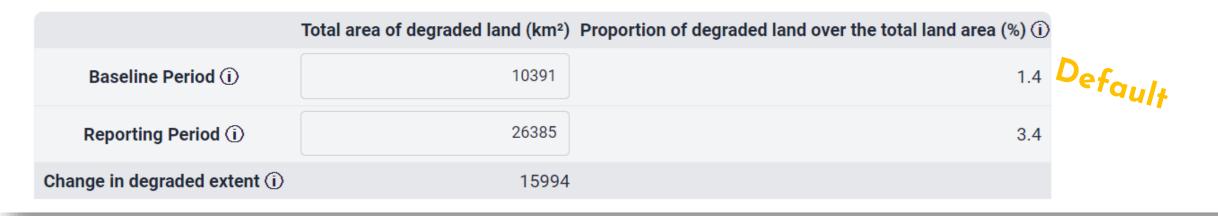
	Total area of degraded land (km²)	Proportion of degraded land over the total land area (%) (i)
Baseline Period (i)	20352	8.0
Reporting Period (i)	25235	10.0
Change in degraded extent $(\hat{\mathbf{i}})$	4883	

Proportion of degraded land over the total land area (Sustainable Development Goal Indicator 15.3.1)

	Total area of degraded land (km ²)	Proportion of degraded land over the total land area (%)	
Baseline Period	55 555	21.9	
Reporting Period	32 402	12.8	Repa
Change in degraded extent	-23153		Reported

BOSNIA & HERZEGOVINA

SO1-4.T1: National estimates of the total area of degraded land (in km²), and the proportion of degraded land relative to the total land area



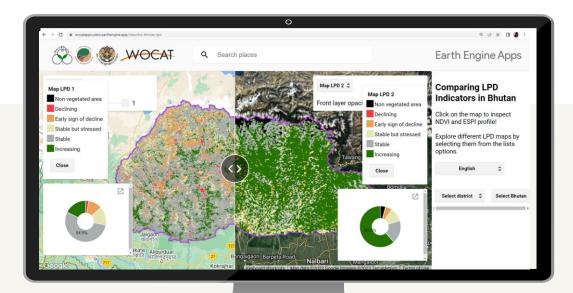
	Total area of degraded land (km ²)	Proportion of degraded land over the total land area (%)	
Baseline Period	4 319 .47	8.5	Reported
Reporting Period	3 457 .98	6.8	e d'ed
Change in degraded extent	-861.49		

SO1-4.T1: National estimates of the total area of degraded land (in km²), and the proportion of degraded land relative to the total land area

Proportion of degraded land over the total land area (Sustainable Development Goal Indicator 15.3.1)

	Total area of degraded land (km ²)	Proportion of degraded land over the total land area (%)
Baseline Period	109 862 .4974	14.3
Reporting Period	102 484 .7157	13.4
Change in degraded extent	-7377.78	

SO1-4.T1: National estimates of the total area of degraded land (in km²), and the proportion of degraded land relative to the total land area

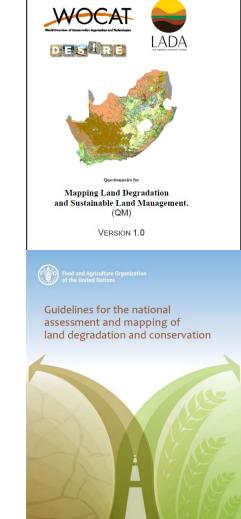

	Total area of degraded land (km ²)	Proportion of degraded land over the total land area (%) (i)	
Baseline Period (i)	541	2.7	Default
Reporting Period (i)	2218	11.1	-417
Change in degraded extent (i)	1677		

	Total area of degraded land (km ²)	Proportion of degraded land over the total land area (%)	
Baseline Period	4 607 .57	11.9	Reported
Reporting Period	5 227 .4	13.5	
Change in degraded extent	619.83		

The most representative LPD map

1.- Which model is best for the Country?

- 2.- Which processes relate with the "Red areas"?
- 3.- Which processes relate to "Green areas"?
- 4.- What is the model that provides the worst results in the Country?

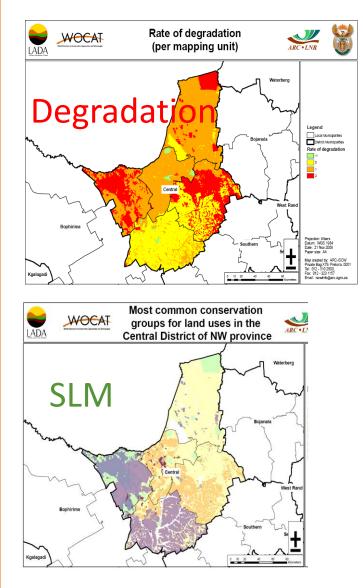

https://wocatapps.users.earthengine.app/view/dss-bhutan-lpd https://wocatapps.users.earthengine.app/view/lpd-comparison-col https://wocatapps.users.earthengine.app/view/ldn-panama-lpd https://wocatapps.users.earthengine.app/view/ldn-ecuador-lpd https://projectgeffao.users.earthengine.app/view/ldn-turkey-lpd https://projectgeffao.users.earthengine.app/view/ldn-bih-lpd

Questionnaire on Mapping Land Degradation and Sustainable Land Management (QM)

- Overview of where land degradation takes place at what intensity and how land users are addressing this problem through Sustainable Land Management (SLM)
- Land Degradation Assessment in Drylands (LADA) project, the DESIRE project and have streamlined methods to map and document Land degradation (LD) and land improvement
- The QM is being promoted by WOCAT and FAO, has been applied in over 30 countries worldwide.

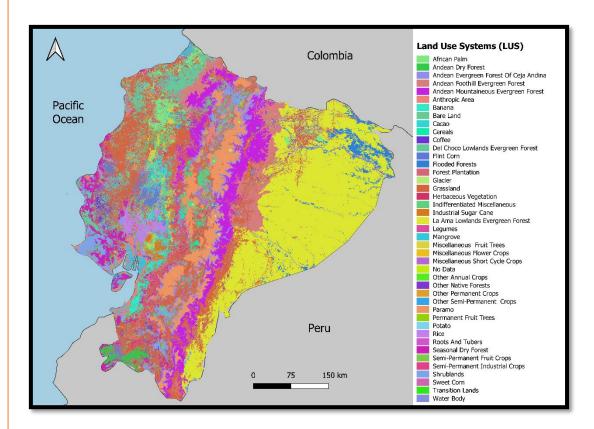
QM ultimate goal: to obtain a picture of the distribution and characteristics of LD and SLM activities at a given scale.

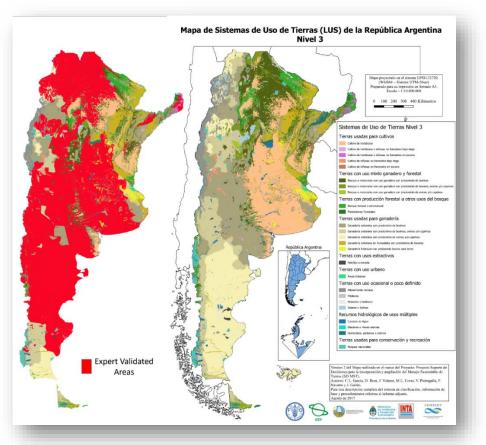
QM – participatory expert assessment (PEA)


- PEA brings together experts, scientists and land users in a workshop to assess different mappings units, drawing on their knowledge and experience of the area
- Experts/specialists/land users with expertise related to land degradation, land management, different land uses, soil and water conservation, biodiversity... in the country /local context
- Discuss, negotiate and fill in the QM tables (supported by documents)

QM results

- The QM does not provide a single output
- It depends on the needs and goals of the government/organisations. E.g.
 - Maps showing hot spots of land degradation and green/bright spots where good land management is taking place


→ Where to invest?


- Maps for the most prominent LD types
- Maps showing conservation
- Maps of Causes for LD or Impact in ES

STEP 1) QM – Preparation of the base map

- Land use systems as base map
- often countries/projects opt to create a new/updated LUS map
- If no LUS map is available, any other land use/land cover map can be used or adapted.

STEP 2) QM - Land Use System assessment

- Estimation of the increase or decrease in area over the past 10 years
- Estimation of the **increase or decrease of the intensity** of each LUS

Table 1: Land use system (Example)

 Name:
 _______First name Last name
 Country:
 ______South Africa

 Mapping Unit Id (LUS + admin. unit):
 113 (Savanna + Ratlou municipality)

	Land Use System (Step2)					
a) LUS area trend	b) LUS inten- sity trend	c) Remarks (e.g. reasons for trend)				
2	1	Increased grazing pressure due to growing numbers of livestock				

Area trend 2 = area coverage is rapidly increasing in size; i.e. > 10% of the LUS area/10 years Intensity trend 1 = moderate increase

STEP 3) QM – Land Degradation assessment

Degradation per LUS

Туре

Extent (area)

Degree

Rate

Direct causes

Indirect causes

Impact on ecosystem services (type and level)

Recommendation

Data entry table:

Table 2: Land degradation (Example)

 Name:
 X Y
 Country:
 South Africa

 Mapping Unit Id (LUS + admin. unit):
 113 (Savanna + Ratlou municipality)

	Land degradation (Step 3)								
a) Type i	e (state <i>ii</i>) iii	b) Extent	c) Degree	d) Rate	e) Direct causes	f) Indirect causes	g) Impact on ecosystem ser- vices	h) Remarks
На	Pc		15%	2	1	g1, e1, f4,	p, h, t	P1-3, E2-2	Degradation is concen- trated in NW communa grazing are of District
Bs			10%	2	-3	g1, g3	е, д	P1-2, S3-1	g3: change of livestock composition from large small stock

• Determine the **major types of land degradation** (WOCAT 2008) presently occurring under each land use system

W: Soil erosion by water

Wt	loss of topsoil (s	surface erosion)
----	--------------------	------------------

- Wg gullying (gully erosion)
- Wm mass movements
- Wr riverbank erosion
- Wc coastal erosion
- Wo offsite degradation

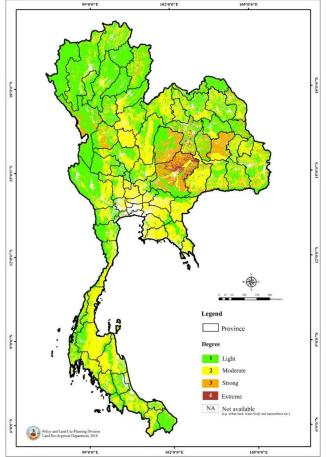
E: Soil erosion by wind

- Et loss of topsoil
- Ed deflation and deposition
- Eo offsite effects

C: Chemical soil deterioration

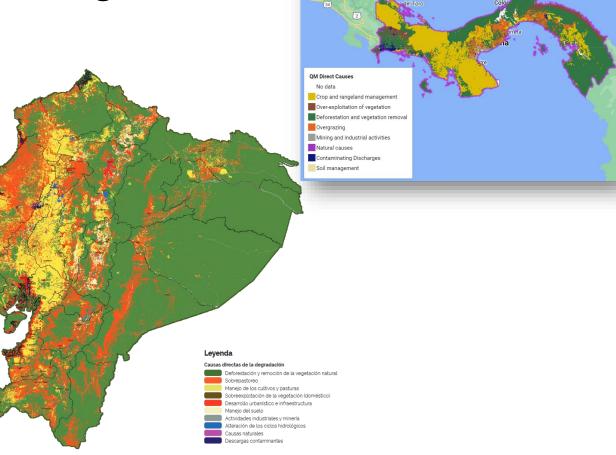
- Cn fertility decline and reduced organic matter content
- Ca acidification
- Cp soil pollution
- Cs salinisation/alkalinisation
- **P: Physical soil deterioration**
- Pc compaction
- Pk sealing and crusting
- Pw waterlogging
- Ps subsidence of organic soils, settling of soil
- Pu loss of bio-productive function due to other activities (eg construction, mining)

B: Biological degradation


- Bc reduction of vegetation cover
- Bh loss of habitats
- Bq quantity / biomass decline
- Bf detrimental effects of fires
- Bs quality and species composition / diversity decline
- BI loss of soil life
- Bp Increase of pest / diseases, loss of predators

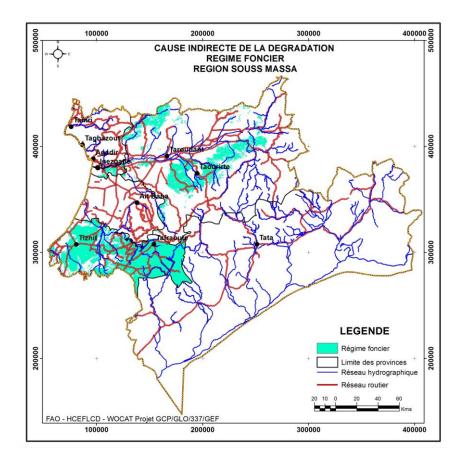
H: Water degradation

- Ha aridification / soil moisture problem
- Hs change in quantity of surface water
- Hg change in groundwater / aquifer level
- Hp decline of surface water quality
- Hq decline of groundwater quality
- Hw reduction of the buffering capacity of wetland areas



- Determine the **degree of degradation**: intensity of the land degradation process
 - 1 **Light:** there are some indications of degradation, but the process is still in an initial phase. It can be easily stopped and damage repaired with minor efforts.
 - 2 **Moderate**: degradation is apparent, but its control and full rehabilitation of the land is still possible with considerable efforts.
 - 3 **Strong**: evident signs of degradation. Changes in land properties are significant and very difficult to restore within reasonable time limits.
 - 4 **Extreme**: degradation beyond restoration.

- Determine the **direct causes of land degradation**
- s: Soil management: improper / cultivation of unsuitable soils ...
- a: Crop and rangeland management: improper ...
- f: Deforestation and removal of natural vegetation
- e: Over-exploitation of vegetation for domestic use
- g: Overgrazing
- i: Industrial activities and mining
- u: Urbanisation and infrastructure development
- p: Discharges leading to point contamination of surface and ground water resources
- q: Causes leading to non-point contamination of surface and ground water resources
- w: Disturbance of the water cycle
- o: Over abstraction of water
- n: Natural causes



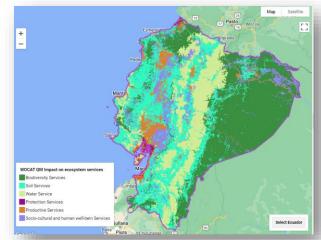
Costa Rica

San José 10 32

- Determine the **indirect causes of land degradation**
 - p: Population density
 - t: Land tenure
 - h: Poverty / wealth
 - I: Labour availability
 - r: Inputs and infrastructure
 - e: Education, access to knowledge and support services
 - w: War and conflict
 - g: Governance / institutional
 - o: Others (specify)

Define the **impact on ecosystem services** (WOCAT 2008) including level of impact

P Productive Services & indicators


- (P1) production (of animal / plant quantity and quality including biomass for energy) and risk
- (P2) water (quantity and quality) for human, animal and plant consumption
- (P3) land availability

E Ecological services (regulating / supporting) & indicators

- (E1) water cycle: floods, storms, excessive rains
- (E2) water cycle: drought, dry season flow, availability of water
- (E3) organic matter status
- (E4) soil cover (vegetation, mulch, etc.)
- (E5) soil structure: surface (eg sealing and crusting) and subsoil affecting infiltration, water and nutrient holding capacity, salinity etc.
- (E6) nutrient cycle (N, P, K) and the carbon cycle (C)
- (E7) soil formation (including wind-deposited soils)
- (E8) biodiversity
- (E9) greenhouse gas emission
- (E10) (micro)-climate (wind, shade, temperature, humidity)

S Socio-cultural services and human well-being & indicators

- (S1) spiritual, aesthetic, cultural landscape and heritage values, recreation and tourism,
- (S2) education and knowledge (including indigenous knowledge)
- (S3) conflicts
- (S4) food security, health and poverty
- (S5) net income
- (S6) private and public infrastructure (buildings, roads, dams, etc.)

- -3 high negative influence: land degradation contributes negatively (more than 50%) to changes in ES
- negative influence: land degradation contributes negatively
 (10-50%) to changes in ES

-1

- low negative influence: land degradation contributes negatively (0-10-%) to changes in ES.
- **0** no impact, i.e. no or negligible change ecosystem service
- +1 low positive influence: land degradation contributes positively (0-10%) to the changes in ES
- +2 positive influence: land degradation contributes positively (10-50%) to the changes in ES
- +3 high positive influence: land degradation contributes positively (more than 50%) to changes in ES.

STEP 4) QM – Sustainable Land Management assessment

Conservation/SLM per LUS

Name / Group / Measure

Extent (area)

Effectiveness

Effectiveness trend

Impact on ecosystem services (type and level)

Degradation addressed

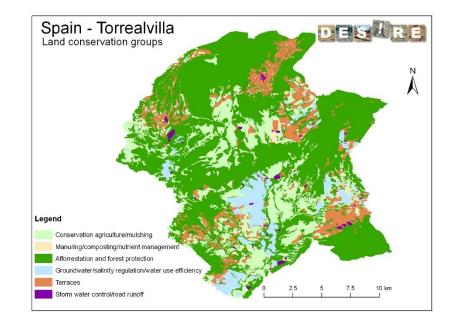
Data entry table:

 Table 3: Conservation (Example)

 Name:
 X Y
 Country:
 South Africa

 Managing Unit 14 (LUS + a lunin unit)
 112 (%
 112 (%)
 113 (%)

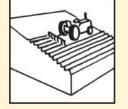
Mapping Unit Id (LUS + admin.	unit): 113	(Savanna + Ratlou municipality)	
-------------------------------	------------	---------------------------------	--


a) Name	b)		leacure	d)		onservati			<u> </u>	<u> </u>	i) Impact on	i)Dorio	k)Ref	1) Remarks
· ·	Group	c) Measure							tiveness		ESS	d	to QT	I) Remarks
Controlled grazing + reseeding	VS	V2	М 2	М	20%	Wt	Pc	PK	3	0	£1+3, £3+3 £2+2, £7+1	1985		Major efforts were made in th late 80'ies and have been mein- tained
Dams (with Agrofor- estry)	WH	<u>5</u> 6	М 1	М	15%	Wt	Cn	На	2	1	P1+2, S2+1 E1+2	1980	RSA05	Great potential for up-scaling

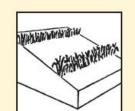
• Define the **impact on ecosystem services** (WOCAT 2008) including level of impact

QM – Sustainable Land Management assessment

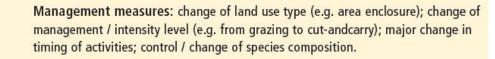
- Name the most widespread SLM technologies for each mapping unit
 - CA: Conservation agriculture / mulching
 - NM: Manuring / composting / nutrient management
 - RO: Rotational system / shifting cultivation / fallow /slash and burn
 - VS: Vegetative strips / cover
 - AF: Agroforestry
 - AP: Afforestation and forest protection
 - RH: Gully control / rehabilitation
 - TR: Terraces
 - GR: Grazing land management
 - WH: Water harvesting
 - SA: Groundwater / salinity regulation / water use efficiency
 - WQ: Water quality improvements
 - SD: Sand dune stabilization
 - CB: Coastal bank protection
 - PR: Protection against natural hazards
 - SC: Storm water control, road runoff
 - OT: Other: (specify)



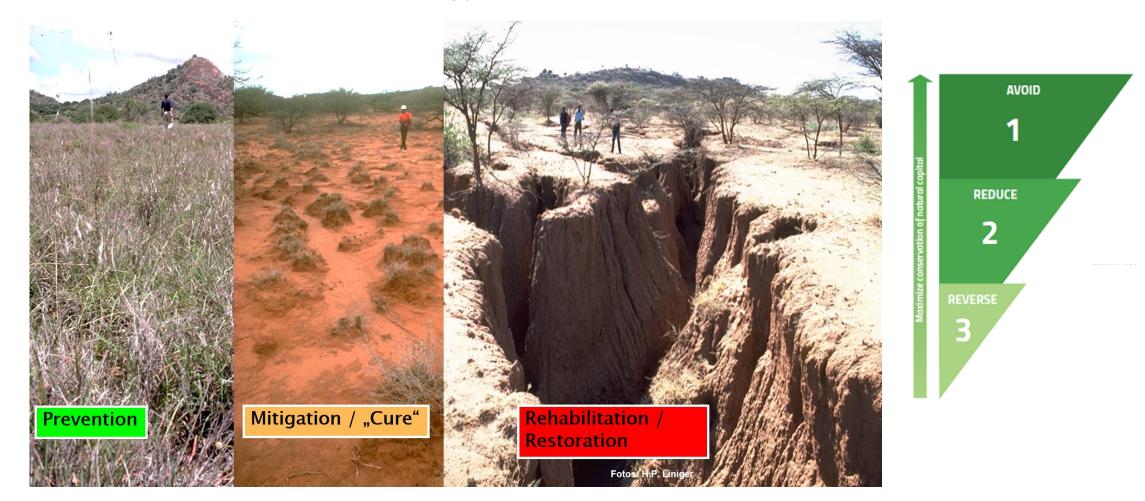
QM – Sustainable Land Management assessment


• Related **SLM measures** (WOCAT categories)

Agronomic measures: measures that improve soil cover (e.g. green cover, mulch); measures that enhance organic matter / soil fertility (e.g. manuring); soil surface treatment (e.g. conservation tillage); subsurface treatment (e.g. deep ripping).


Vegetative measures: plantation / reseeding of tree and shrub species (e.g. live fences; tree crows), grasses and perennial herbaceous plants (e.g. grass strips).

Structural measures: terraces (bench, forward / backward sloping); bunds banks / level, graded); dams, pans; ditches (level, graded); walls, barriers, palisades.



QM – Sustainable Land Management assessment

• **Purpose** of the SLM technology

QM – Sustainable Land Management

- Determine the effectiveness of implemented SLM technologies (how much the technology reduces the degree of degradation or how well it is preventing degradation)
- Determine the **effectiveness trend** (does the technology have a growing positive or negative impact on reducing degradation)
- Determine the **impact on Ecosystem Services**

STEP 5) QM – Expert recommendation

• For each mapping unit, provide an **expert recommendation concerning interventions** on how to address degradation (maximum 2).

Decide on the best intervention using the following:

A Adaptation to the problem: the degradation is either too serious to deal with and is accepted as a fact of life, or it is not worthwhile the effort to invest in.

P Prevention implies the use of conservation measures that maintain natural resources and their environmental and productive function on land that may be prone to further degradation

M Mitigation: is intervention intended to reduce ongoing degradation.

R Rehabilitation: is intervention when the land is already degraded to such an extent that the original use is only possible with extreme efforts as land has become practically unproductive.

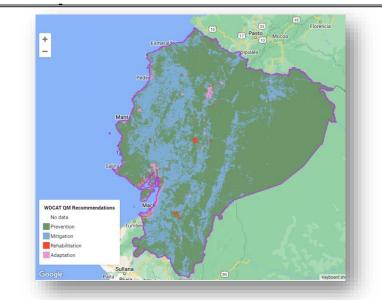
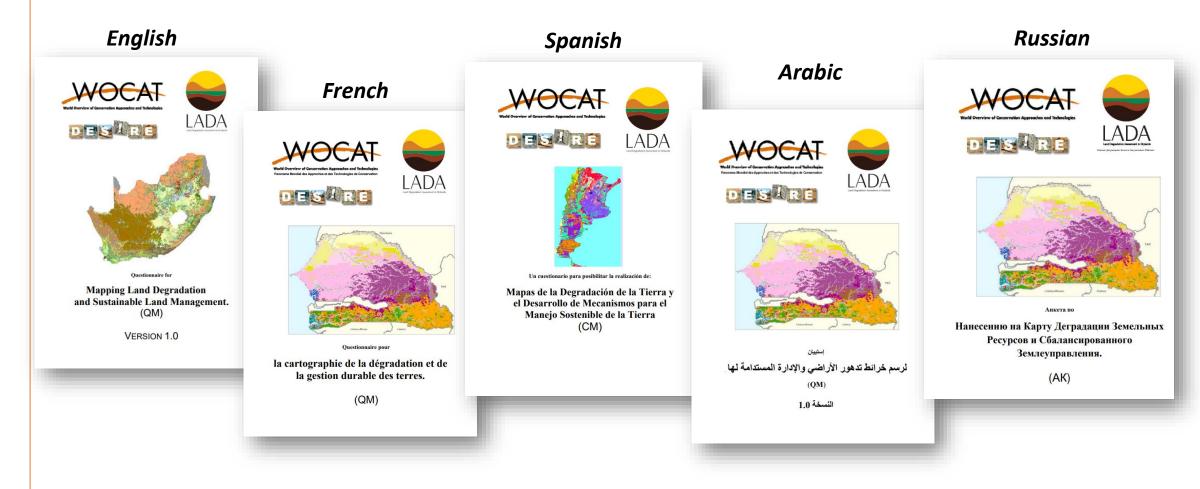
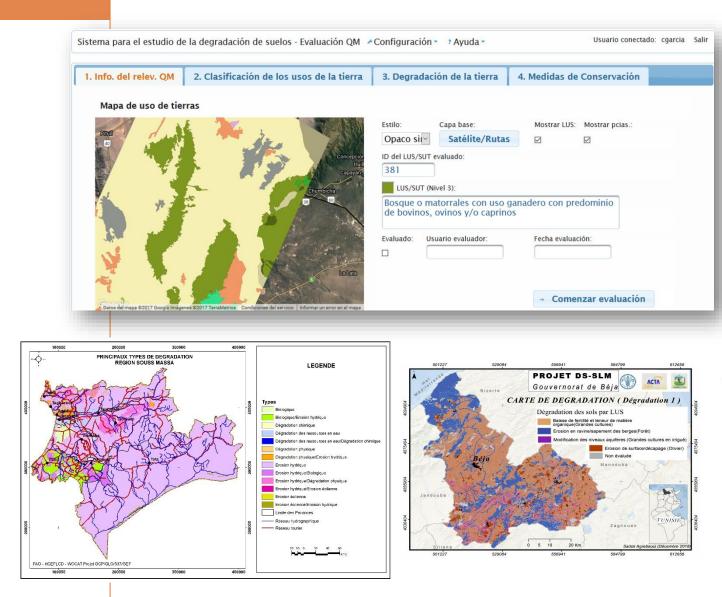

Data entry table:

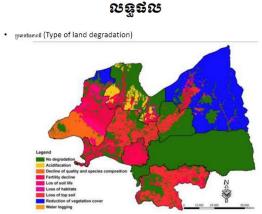
Table 4: Expert recommendation (Example)

 Name:
 X Y
 Country:
 South Africa


 Mapping Unit Id (LUS + admin. unit):
 113 (Savanna + Ratlou municipality)

Expert recommendation (Step 5)					
Expert recommendation	Remarks and additional information				
ዋ	Maintain good soil cover conditions through agroforestry systems				
М	Reduce loss of water through runoff and evaporation by the soil surface through mulching and minimum tillage.				


QM – Available in 5 different languages

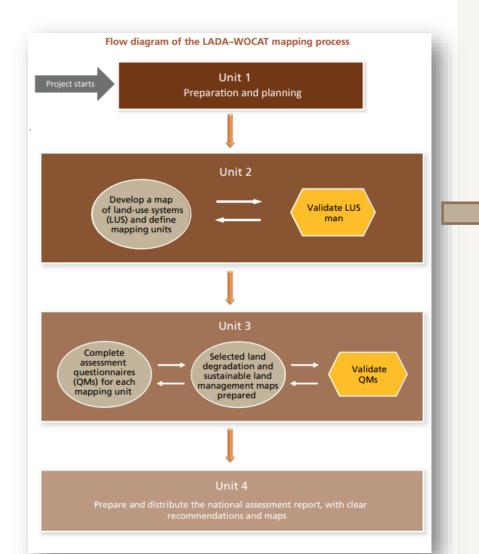

https://www.wocat.net/library/media/18/

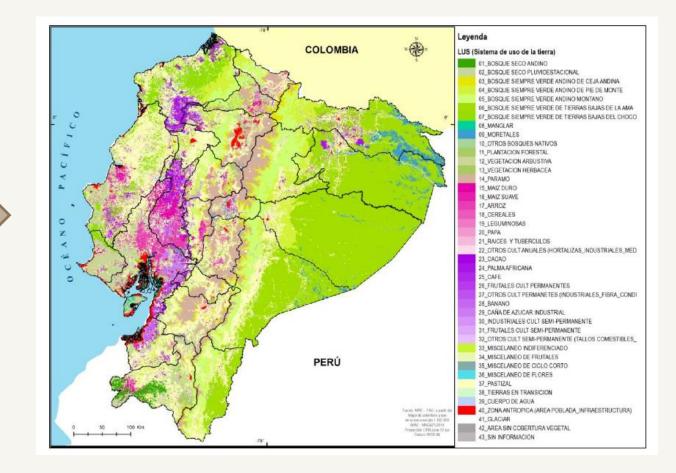
Results depends on the local adaptations to QM

			San
Provincia:	Jujuy	Departamento:	Antonio
País:	Argentina	LUS:	10
Identificación de la Unidad	de Mapeo: Oasis de Riego - Valles	Calchaquíes	
Sist	ema/Clasificación del Uso de la Ti	erra (Paso 2)	
a) Tendencia del Área	b) Intensidad de la Tendencia	c) Obervaciones (por ej. razones de la tendencia)	
1	1	Aparición de grandes pooles vitivinícolas (grandes empresas)	

Example of Full QM analysis in Argentina

					Degrada	ción de la Tierra (Pa	aso 3)		
	a) Tipo			c)	d)	e)	f)	g)	h)
i	ii	iii	Extensión	Grado	Tasa	Causas directas	Causas indirectas	Impacto sobre los SE	Observaciones
•			Extension	Grado	Tusu			P1 (-1); E2 (-3); P2 (-3);	Observaciones
Wg			10	2	2	S2; C5; C6; N3	С, Т, Е	S4 (-1); E5 (-2)	
	Wt		20	2	1	C5; W1	С, Т, Е	P1 (-1); E2 (-3); P2 (-3); S4 (-1); E5 (-2)	
								P1 (-1); E2 (-3); P2 (-3);	
		Ed	30	2	1	C1; S1	С, Т, Е	S4 (-1)	
		Hg	30	3	3	C5; C6	С, Т, Е	P1 (-1); E2 (-3); P2 (-3); S4 (-1)	

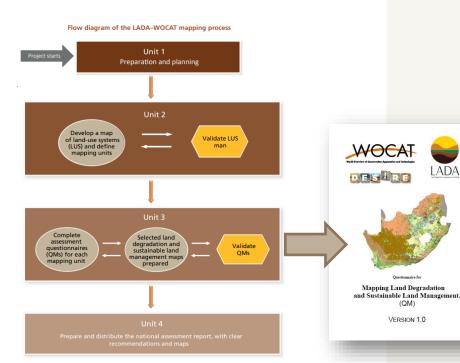

	Conservación (Paso 4)													
a) Nombre	b) Grupo		c) Medid	a d)	e) % del área	f) A	bordaje de	e la	g) Eficacia	h)Tendencia de la	i) Impacto	j) Período	k) Referencia	I)
				Propósit)	C	Degradaciór	า		Eficacia	sobre los SE		al QT	Observaciones
Abonos											P1; E5; P3; E2			
orgánicos	AM	A2		P,M,R	30	Wt			3	1	(2)	Continuo		
														Es necesario el
											P2 (3); S1 (2);			mantenimient
Control de)3 (1); S6 (1);	Década del		o de la
cárcavas	RH	S3		P,R	5	Wg			3, 4	0	E1 (3)	80		estructura.


	Recomendaciones de Expertos (Paso 5)
Recomendaciones de Expertos	Observaciones e Información adicional
P, M, R	Expandir el uso de medidas del control del agua. Manejar la eficiencia del agua de riego. Incrementar el uso de abonos orgánicos.

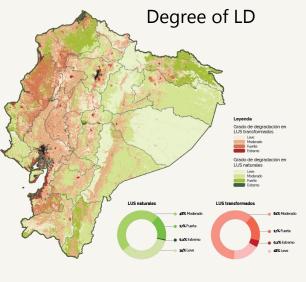
National Evaluation of Land Degradation LADA-WOCAT in Ecuador

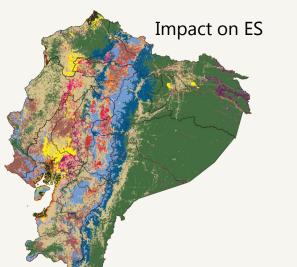
43 LUS + ADMINISTRATIVE UNITS= 647 Mapping Units

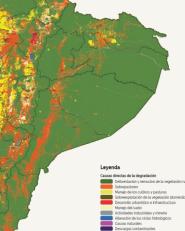
National Evaluation of Land Degradation LADA-WOCAT in Ecuador


LADA

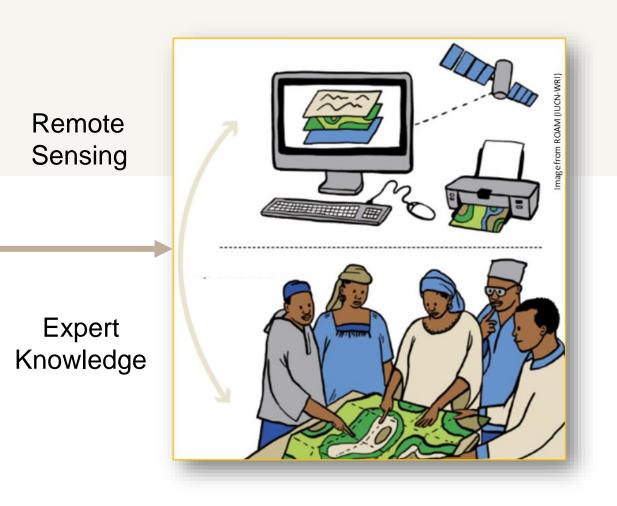
(QM)

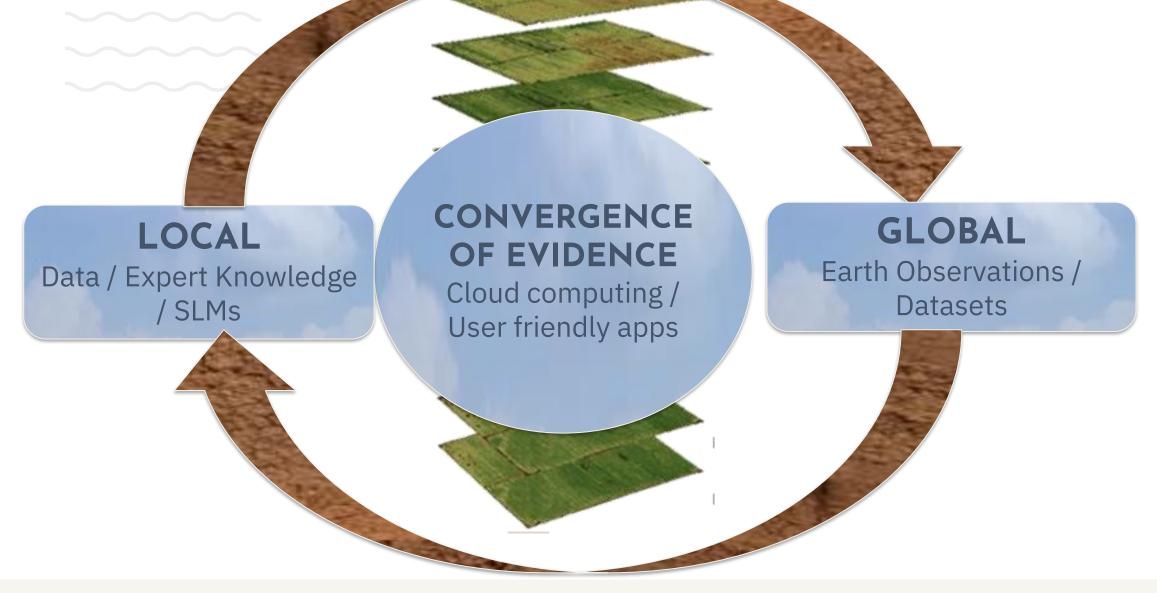

VERSION 1.0





https://www.wocat.net/library/media/18/





Other layers:

- Type of LD
- Conservation Measures
- Recommendations

Which is the best approach?

The most likely explanation (hypothesis, inference, explanation, conclusion or best guess) about the status of LD at a given location that can be updated / improved with additional local information

CONVERGENCE OF EVIDENCE

Accumulated evidence that certain core issues related to land degradation currently co-exist at a given location

📉 remote sensing

https://doi.org/10.3390/rs11242918

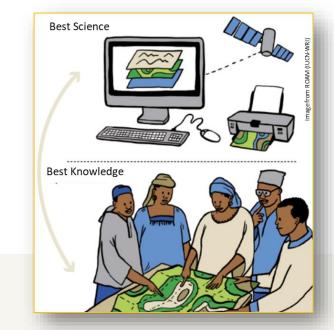
Article Combining Earth Observations, Cloud Computing, and Expert Knowledge to Inform National Level Degradation Assessments in Support of the 2030 Development Agenda

Contents lists available at ScienceDirect

Environmental Science and Policy

journal homepage: www.elsevier.com/locate/envs

https://doi.org/10.1016/j.envsci.2018.10.018

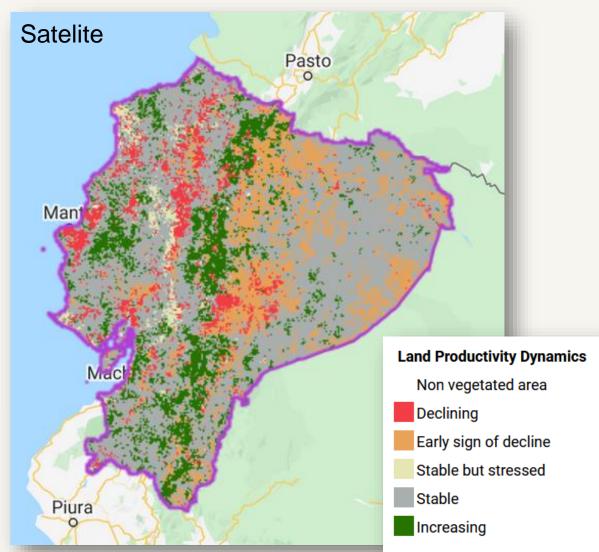

Land degradation assessment in the Argentinean Puna: Comparing expert knowledge with satellite-derived information

HOW CAN WE INTEGRATE KNOWLEDGE USING THE PRINCIPLE OF CONVERGENCE OF EVIDENCE ?


Co-development and integration of context-relevant tools and datasets

Validation of data by local experts / field verification

Participatory process involving all-level stakeholders Develop user friendly, dynamic and flexible Decision Support Systems (DSS) that do not provide all the answers (take advantage of cloud computing!)



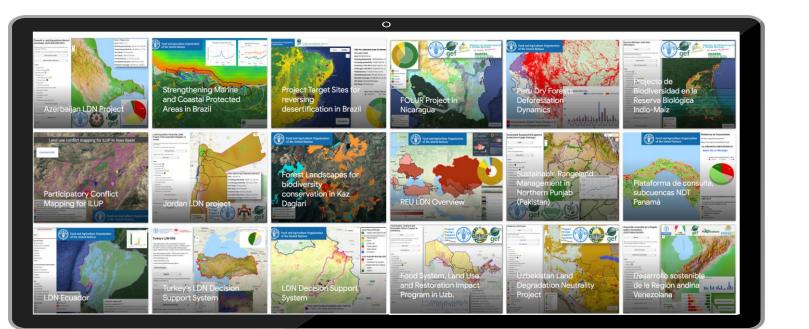
Comparing results

WOCAT

Publication: https://doi.org/10.1002/ldr.4645

Co-development of tools to support the implementation of many GEF Founded projects, LD monitoring and Decision Support

Google Earth Engine Apps


- Define which issues they consider important to map
- Decide which data sets and methodologies are most appropriate
- Use their knowledge and experience and context to make sense out of the information
- Analyze the data using different functionalities

Integration of context-relevant tools and datasets into user friendly, dynamic and flexible systems.

MAIN FUNCTIONALITIES

- Visualization and comparison of maps
- Nationally validated indicators and curated maps from multiple sources.
- Statistics, charts and tables at different spatial scales
- Advance Multicriteria Analysis
- Land cover Transition Analysis with national data
- Support to Participatory Mapping process
- Support Informed Decision Making Support

Co-development of tools to support the implementation of many GEF Founded projects, LD monitoring and Decision Support

Based on Google Earth Engine Apps that can be used freely for non-commercial applications

Does not require having a server and maintaining infrastructure

Open source and free code to use, copy and modify

https://doi.org/10.1002/ldr.4645

OVERVIEW OF LAND DEGRADATION NEUTRALITY (LDN) IN EUROPE AND CENTRAL ASIA

https://doi.org/10.4060/cb7986en

Google Earth Engine Apps

different projects, countries, programs, regions and global level. Apps with different aims, layers and functionalities according to requirement.

Between WOCAT and FAO: More than 65 Apps co-developed for

How does a DSS tool looks like?

https://www.wocat.net/en/ldn/wocatapps/

https://projectgeffao.users.earthengine.app/

https://wocatapps.users.earthengine.app

Visualization and comparison of maps Support to Participatory Mapping process Statistics, charts and tables at different spatial scales

Land cover Transition Analysis with national data Advance Multicriteria Analysis

Objective: to support projects design, investment allocation, decision making for Land Use Planning and restoration priorities, SLM implementation strategies and monitoring towards SDG.

World Overview of Conservation Approaches and Technologies

www.wocat.net wocatnet

Asian knowledge hub on sustainable soil and land management Share, Learn, Inspire

