WEBINARS SERIES
ON RAINWATER HARVESTING
21st June 2022

Module n°2: RWH processes
Linking Watershed Management with Local Water Harvesting and SLM

Hanspeter Liniger, WOCAT, CDE, University of Bern
Water Harvesting (WH) – Guidelines to Good Practice

Mekdaschi Studer, R. and Liniger, H. 2013

https://www.wocat.net/library/media/25/
Also available in French: La collecte de l'eau - Directive pour de bonne pratiques

See: Webinar Module 1: Introduction to Rainwater Harvesting (Mekdaschi Studer, Oweis)

On- and offsite Benefits of SLM

Principle of WH

- **composed of:**
 - **Catchment or collection area:** high runoff coefficients (e.g. clay or shallow soils, compacted soils, roads)
 - **Conveyance system**
 - **Storage component**
 - **Application area or target:** e.g. deep soils with high water infiltration and storage capacity

- catchment to application area ratio (C:A) degree of concentration of rainfall / runoff
- upstream-downstream dependency
- onsite – offsite dependency

Source: Mekdaschi Studer, Liniger 2013
4 Groups of Water Harvesting

1. Floodwater Harvesting
2. Macrocatchment
3. Microcatchments
4. Rooftop/Courtyard WH

1 & 2 are at watershed level
3 & 4 are at local / field level

Source: Mekdaschi Studer, Liniger 2013; On- and offsite Benefits of SLM
Water harvesting / LM practices and impacts in the watershed (catchment, basin)

How to estimate surface runoff from daily rainfall in small catchments / watersheds?
What is the influence of:
- Land Cover and Management
- Soil / Slope / Relief
- Amount and Intensity of Daily Rainfall

Source: Hanspeter Liniger
Watershed Approach to combine interactions of local Land Management (LM) /WH practices

- Current land management (LM1) determines the runoff generated from each area
Watershed Approach to combine interactions of local Land Management (LM) /WH practices

- Current land management (LM1) determines the runoff generated from each area
- This adds up to the total runoff/discharge generated at the outlet of the catchment ...
- ...and influences the desing of a WH technology
- Any land management change (LM1 → LM2) results in a different catchment discharge and potential for Macro-/Floodwater Harvesting
- Tool to develop scenarios is needed for watershed planning and management: Facilitating interactive and participatory identification of WH practices

Source: Mekdaschi Studer, Liniger 2013;
An easy to use Watershed Tool?

• A number of watershed models exit: SWAT, STEPS, However, few are used for practical use, planning, development of SLM / WH projects
• According to practitioners they are too demanding and thus almost only applied by researchers in selected areas
• WOCAT with SLM / WH partners have been developing and testing a Watershed Tool to assess hydrological processes that are sensitive to land management (first as a DRR tool to identify LM solutions to reduce floods in Central Asia))
• Which land management areas generate most runoff?
• What happens if land use / management changes?
• WOCAT Watershed Tool: How does it work?
 • Based on single / daily rainfall events
 • QGIS-based, open source
 • Almost no GIS knowledge needed
 • Simple compared to other hydrological models (e.g. SWAT)
 • Prototype version: under further development

Not enough rainfall ...
... but increased floods followed by droughts → tragedy of drylands
Assessing runoff sensitive to different mgt practices

Inputs needed
- Identify watershed
- Map Hydrological response units:
 - LULC, land management practices
 - Soil Group (A, B, C, D)
 - Slope
 - Soil moisture condition (dry, average, wet)

SCS Runoff Curve Number Model (SCS 1972)
- Empirical parameter (used tested adapted worldwide)
- Adjusted to slope (Sharpley and Williams 1990)

Source: SCS, 1992, 2004
Key is the water balance at local level and its impact at watershed level.

Water Balance

Local: \(P = RO + \Delta Sw + \Delta Gw + T + E \)
Regional: \(Fo = Ei + RO + GW \)

without SLWM rainy season

Flow out \(\rightarrow \) Flood

with SLWM rainy season

Flow out \(\rightarrow \) Flood along river

Source: Hanspeter Liniger: Lecture notes
Example Haiti: runoff, and groundwater recharge, spring flow,…

Total watershed runoff:
% of rainfall:
A: 18%
B: 41%

Total groundwater / Springshed recharge: % of rainfall:
A: 19.3%
B: 7.5%

Source: Eichenberger J., Liniger HP. 2020

See Video and Policy Brief Case Study Haiti:

Rainwater Harvesting Linking Watershed – Local: HP Liniger

Photos: HP Liniger
Example India:
Drying up springs in the Himalayas
Potential for WH and groundwater recharge

Key message
- Of the estimated 3 million springs in the Indian Himalayan Region (IHR), roughly 60% have dried up or become seasonal.

villages depend on spring water...

Why drying up???

... due to climate change or land use change?

Source: Bandy 2020, Liniger et al. 2020
Example India: Changing Forests: *Pine vs. Broadleaf, Gorang Valley*

Banj Oak Soil:
SOC increased, high water holding capacity, visible root development, habitat for diverse species, liveable temperature

Pine Soil:
Pine needle cover, compact, rocky impermeable, no root development, organism/microbe deficit, “deadly” temp., ...

Source: Bandy 2020, Liniger et al. 2020
Example India: Infiltration in Pine forests is dramatically reduced

Soil Infiltration in Pine Forest
Topsoil baked by high temperature and frequent fire

Soil Infiltration in Oak Forest
Healthy topsoil protected from extreme temperature

Water
Water is lost as runoff.
Water goes down in the ground.

Photos: H.P. Liniger
India: Runoff, Recharge ponds, groundwater / spring recharge

Figure 6. A recharge pond serves as a water harvesting technology, collecting runoff water from a nearby pine forest. It serves as a point of infiltration and groundwater recharge for their local spring. (Photo: HP Liniger)

Figure 7. Water Balance: Rainwater divided into runoff, groundwater recharge and evapotranspiration in mm for different land use types. The calculation assumes a total rainfall of 957 mm (between May and September 2018) using daily local rainfall records. (Source: Bandy and Liniger 2020)15.

Source: Bandy 2020, Liniger et al. 2020
Experiences Haiti, India, Colombia, Central Asia, Kenya
Runoff/ Floods, WH, groundwater recharge, spring flow,…

Watershed tool used for:
• Assessing current situation: Estimation of areas with highest runoff, total outflow volume
• Identifying areas for local interventions and Exploring different scenarios for:
 • WH with microcatchments or other SLM practices and their impacts downstream
 • WH with macrocatchments, depending on upstream interventions and impacts downstream

Needed for:
• Watershed planners, decision makers to better understand, negotiate, optimize up- and downstream interaction.
• Implementers: For local communities / planners / decision makers and water user associations: reduce conflicts, reduce water loss, reduce flood flows and water demand for irrigation
• Link to WOCAT SLM / WH documentation

Source: Watershed Tool:
Source: WOCAT SLM Practices:
https://qcat.wocat.net/en/wocat/
In the WOCAT SLM Database the impacts of different sustainable land management practices including WH are assessed and documented:

- **Onsite impacts**: on production, runoff, ...
- **Offsite impacts**: on floods, droughts, drying up of rivers and springs, ...

Source: https://qcat.wocat.net/en/wocat/
From problems to solutions: locally and in the watershed

→ key challenge

Part I – Identification:
Problems and possible solutions:
- Land management practices: «bad» and «good»
- Their spread and impact

Part II – Assessment:
- Document & evaluate existing solutions (WOCAT database)
- Mapping watershed, land management & assess impact, building scenarios

Part III – Selection:
- Select most promising SLM technologies and approaches
- Select, what, where and how large and assess the impact

10 min video made for Tajik TV:
https://www.wocat.net/library/media/136/
On-site water balance triggers ...
large and divers offsite costs or benefits

Cover and land management of the topsoil are key for onsite (local) as well offsite (watershed) management:

- Determining...
 - water harvesting potential;
 - peak flow and the sediment load

“Deadly” surface temperatures of unprotected soil affecting water cycle
Outlook: Water Harvesting Explorer

A decision support webtool for small scale water storage intervention planning in the Western Sahel, available in EN and FR; https://sahel.acaciadata.com/

The WOCAT cases show successful implementation at precise locations (geo-referenced)
SLM, WH, Watershed Approaches: WOCAT SLM Database

Water user associations / groups (WUA / WUG)
Participatory Land Use Planning (PLUP)
Integrated watershed management (IWM)
Integrated watershed management (IWM)
Payment for Ecosystem Services (PES)

→ **Strengthen the link Local- Watershed! Need for a tool!**
→ **Multi-level, multi-stakeholder, multi-age, multi-cultural, ...**
→ **Capacity building: education (next generation → students), extension, advisory service, planning and decision makers: Local and regional / watershed**

Water Harvesting – Guidelines to Good Practice (E/F): https://www.wocat.net/library/media/25/

Thank you for your attention

Hanspeter Liniger, WOCAT, CDE, University of Bern: hanspeter Liniger@unibe.ch